
THE GROTHENDIECK–SERRE CONJECTURE OVER VALUATION RINGS

NING GUO

Abstract. In this article, we establish the Grothendieck–Serre conjecture over valuation rings:
for a reductive group scheme G over a valuation ring V with fraction field K, a G-torsor over
V is trivial if it is trivial over K. This result is predicted by the original Grothendieck–Serre
conjecture and the resolution of singularities. The novelty of our proof lies in overcoming
subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and
inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélène–
Sansuc’s case of tori. Then, taking advantage of techniques in algebraization, we obtain the
passage to the Henselian rank one case. Finally, we induct on Levi subgroups and use the
integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case,
in which we appeal to properties of parahoric subgroups in Bruhat–Tits theory to conclude. In
the last section, by using extension properties of reflexive sheaves on formal power series over
valuation rings and patching of torsors, we prove a variant of Nisnevich’s purity conjecture.
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1. The Grothendieck–Serre conjecture and Zariski’s local uniformization

Originally conceived by J.-P. Serre [Ser58, p. 31, Rem.] and A. Grothendieck [Gro58, pp. 26–27, Rem. 3]
in 1958, the prototype of the Grothendieck–Serre conjecture predicted that for an algebraic group G
over an algebraically closed field k, a G-torsor over a nonsingular k-variety is Zariski-locally trivial if it
is generically trivial. With its subsequent generalization to regular base schemes by A. Grothendieck
[Gro68, Rem. 1.11.a] and the localization by spreading out, the conjecture became the following.
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Conjecture 1.1 (Grothendieck–Serre). For a reductive group scheme G over a regular local ring R with
fraction field K, the following map between nonabelian étale cohomology pointed sets has trivial kernel:

H1
étpR,Gq Ñ H1

étpK,Gq;

in other words, a G-torsor over R is trivial if its restriction over K is trivial.

Diverse variants and cases of Conjecture 1.1 were derived in the last decades. A nice survey of the topic
is [Čes22b]. For state-of-the-art results, a more general variant of Conjecture 1.1 over regular semilocal
rings containing fields was established by Panin and Fedorov–Panin ([Pan20,FP15]); Česnavičius [Čes22a]
settled the unramified quasi-split case (the prior split case is [Fed22]); recently, Guo–Liu [GL23] proved the
conjecture for constant group schemes and the smooth projective case was proved by Guo–Panin–Stavrova
[GP23, PS23a, PS23b]. The goal of this article is to settle the analogue of Conjecture 1.1 when R is
instead assumed to be a valuation ring. This variant is expected because of the following consequence of
the resolution of singularities conjecture, a weak form of Zariski’s local uniformization.

Conjecture 1.2 (Zariski). Every valuation ring is a filtered direct limit of regular local rings.

Even though Conjecture 1.2 is weaker than Zariski’s local uniformization, all its known results come from
resolutions or alternations. For a variety X over a field k, when chark “ 0, the local uniformization was
resolved by Zariski [Zar40]; when char k ą 0, it was proved for 3-folds [Abh66,Cut09,CP08,CP09] and
surfaces [Abh56]. Temkin [Tem13] achieved the local uniformization after taking a purely inseparable
extension of function fields. For a valuation ring V whose fraction field K has no degree p extensions (e.g.,
K is algebraically closed) where p is the residue characteristic, Conjecture 1.2 follows from p-primary
alterations [Tem17]. When dimX ě 4 and char k ą 0, the local uniformization is widely open.

By assuming Conjecture 1.2, a limit argument [Gir71, VII, 2.1.6] reduces the Grothendieck–Serre over
valuation rings to Conjecture 1.1. In particular, Conjectures 1.1 and 1.2 predict the following main result.

Theorem 1.3. For a reductive group scheme G over a valuation ring V with fraction field K, the map

H1
étpV,Gq Ñ H1

étpK,Gq is injective. (♦)

The special case of Theorem 1.3 when G is an orthogonal group for a nondegenerate quadratic form and
V is a valuation ring in which 2 is invertible was proved in [CTS87, 6.4] and [CLRR80, Thm. 4.5].

Besides its connection to the resolution of singularities, the considered variant Theorem 1.3 offers a few
glimpses of the behavior of torsors in the nonarchimedean geometry (more precisely, the rigid-analytic
geometry), where the building blocks are affinoids over fraction fields of certain valuation rings (indeed,
nonarchimedean fields) and valuation rings usually emerge as rings of definition in Huber pairs. Not
to mention, the simplest objects in perfectoid spaces, perfectoid fields, are required to be nondiscrete
valued fields, whose valuation rings are non-Noetherian. Also, the following proposition shows that the
Grothendieck–Serre over valuation rings yields patching of torsors with respect to arc-covers (Cf. [BM21]).

Proposition 1.4 (Corollary 4.6). For a valuation ring V of rank n ą 0, the prime p Ă V of height n´ 1,
and a reductive V -group scheme G, the following map

ImpGpVpq Ñ Gpκppqqq ¨ ImpGpV {pq Ñ Gpκppqqq� Gpκppqq is surjective.

The non-Noetherianness of general valuation rings introduces considerable subtleties, even when G is
a torus. Namely, in this case we can no longer adopt the method of [CTS87, 4.1] and need to devise
alternative arguments. For instance, a crucial ingredient of ibid. is the exact sequence of étale sheaves

0 Ñ Gm,S Ñ i˚pGm,ξq Ñ ‘xPSp1qix˚pZxq Ñ 0, (1.4.1)

where S is a semilocal regular scheme with the union of generic points i : ξ Ñ S and x ranges over the
points of codimension 1. Being used in the proof of op. cit., 2.2, however, the short exact sequence (1.4.1)
fails for general valuation rings. For a valuation ring with fraction field K and value group Γ, we have

0 Ñ V ˆ Ñ Kˆ Ñ Γ Ñ 0,
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where the abelian group Γ is typically infinitely generated, rendering the arguments in [CTS78,CTS87]
knotty to emulate. To circumvent this, after using a flasque resolution of tori, we apply local cohomology
techniques to induct on the Krull dimension of the valuation ring. This reduces us to the following:

for a flasque torus F over a valuation ring pV,mV q of finite rank, we have H2
mV pV, F q “ 0. (˚)

For a flasque torus with character group Λ, by definition (§2.5), the Galois action on Λ has special
properties, so certain Galois cohomology of Λ vanishes, which leads to the vanishing of local cohomology
(˚) and therefore the case of tori:

Proposition 1.5 (Proposition 2.7). For a torus T over a valuation ring V with fraction field K,
the map H1

étpV, T q ãÑ H1
étpK,T q is injective.

For a multiplicative type group M of finite type over V , the map between pointed sets of fpqc cohomology
H1

fpqcpV,Mq ãÑ H1
fpqcpK,Mq is injective.

This case of tori, in turn, yields the simplest case of the product formula stated in (1.5.1) below (or, see
Lemma 4.4), which is essential for further reduction of Theorem 1.3.

A practical advantage of Henselian rank-one valuation rings is that several techniques of Bruhat–Tits
theory, especially in [BTII, §4-5], become available. The goal of §3 and §4 is to reduce Theorem 1.3 to this
case: after a limit argument that leads to the case of finite rank, we induct on the rank n of a valuation
ring V by patching torsors. The induction hypothesis implies that our G-torsor over V is a gluing of
trivial torsors. For this gluing, we choose an a P V such that the a-adic completion V a

p

is a rank-one
Henselian valuation ring with Ka

p

:“ Frac V a
p

; so that, V r 1
a s is a valuation ring of rank n´ 1. Similar to

the Beauville–Laszlo’s gluing of bundles, our patching is reformulated as the product formula
GpKa
p

q “ Im
`

GpV r 1
a sq Ñ GpKa

p

q
˘

¨GpV a
p

q. (1.5.1)
The strategy for proving this formula is a “dévissage” that establishes approximation properties of certain
subgroups of G

pV a . In this procedure, techniques of algebraization [BČ22, §2] play an important role,
especially for a Harder-type approximation (see §3) and the following higher rank counterpart of [Pra82].

Proposition 1.6 (Proposition 4.3). For a reductive anisotropic group scheme G over a Henselian
valuation ring V with fraction field K, we have GpV q “ GpKq.

Based on its special case when K “ Ka
p

is complete due to Maculan [Mac17, Thm. 1.1], our approach to
Proposition 1.6 is a reduction to completion that rests on techniques of algebraization to approximate
schemes characterizing the anisotropicity of G

pV a . Indeed, Proposition 1.6 is an anisotropic version of the
product formula (1.5.1). Proposition 1.6 is helpful, not only for the reduction to the Henselian rank-one
case, but also for the induction on Levi subgroups when reducing to the semisimple anisotropic case in §5.
After these reductions, we transfer Theorem 1.3 into the injectivity of a map of Galois cohomologies. We
conclude by taking advantage of properties of parahoric subgroups in Bruhat–Tits theory, see Theorem 6.1.

In addition to techniques of algebraization, another crucial element of our reduction to the Henselian
rank-one case is a lifting property of maximal tori of reductive group schemes.

Lemma 1.7 (Lemma 3.10). For a reductive group scheme G over a local ring pR, κq with a maximal
κ-torus T , if the cardinality of κ is at least dimpGadq, then G has a maximal R-torus T such that

Tκ “ T.

This strengthens a result of Grothendieck [SGA 3II, XIV, 3.20] that a maximal torus of a reductive group
scheme exists Zariski-locally on the base. By a correspondence of maximal tori and regular sections, the
novelty is to lift regular sections instead of merely proving their existence Zariski-locally. Depending on
inspection of the reasoning for ibid., the key point is [Bar67], which guarantees that Lie algebras over
fields with large cardinalities contain regular sections. For lifting regular sections, we need the functorial
property of Killing polynomials. Indeed, Killing polynomials over rings were defined ambiguously in
in the original literature, see [SGA 3II, XIV, 2.2]. Therefore, to establish Lemma 1.7, we first add the
supplementary details §3.8 for Killing polynomials over rings. Subsequently, for a Lie algebra with locally
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constant nilpotent rank, we use the functoriality of Killing polynomials to deduce the openness of the
regular locus. This openness permits us to lift regular sections, which amounts to lifting maximal tori.

In §7, we acquire a variant of Nisnevich’s purity conjecture [Nis89, 1.3], whose statement is the following.

Conjecture 1.8 (Nisnevich’s purity). For a reductive group scheme G over a regular local ring R with a
regular parameter f P mRzm2

R, every Zariski-locally trivial G-torsor over Rr 1
f s is trivial, that is, we have

H1
ZarpRr

1
f s, Gq “ t˚u.

This conjecture generalizes Quillen’s conjecture [Qui76, Comments] when G “ GLn and was proved by
Gabber [Gab81] for G “ GLn and PGLn when dimR ď 3. In this article, we consider a variant: for a
valuation ring V and its ring of formal power series V JtK, we let R “ V JtK and f “ t, hence Rr 1

f s “ V pptqq.

Proposition 1.9 (Corollary 7.6). For a reductive group scheme G over a valuation ring V , every
Zariski-locally trivial G-torsor over V pptqq is trivial, that is, we have

H1
ZarpV pptqq, Gq “ t˚u.

This Proposition 1.9 follows from the injectivity of the map H1
étpV pptqq, Gq Ñ H1

étpKpptqq, Gq proved in
Proposition 7.5. In fact, by cohomological properties of reflexive sheaves (see 7.1), every étale GLn-torsor
over V pptqq is trivial. With an embedding G ãÑ GLn, we obtain Proposition 1.9 by patching torsors.

1.10. Notation and conventions. For various notions and properties about valuation rings and valued
fields, see Appendix §A. We adopt the notion in [SGA 3III new] for reductive group schemes: they are
group schemes smooth affine over their base schemes, such that each geometric fiber is connected and
contains no normal subgroup that is an iterated extension of Ga. For a valuation ring V , we denote by
mV the maximal ideal of V . When V has finite rank n, for the prime p Ă V of height n´ 1 and a P mV zp,
we denote by V a

p

the a-adic completion of V . For a module M finitely generated over a topological ring
A, we endow M with the canonical topology as the quotient of the product topology via π : A‘n �M .
By [GR18, 8.3.34], this topology on M is independent of the choice of π.
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article is supported by the EDMH doctoral program. This work was done under support of the grant
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2. The case of tori

The goal of this section is to prove the Grothendieck–Serre conjecture over valuation rings for tori, a
non-Noetherian counterpart of Colliot-Thélène–Sansuc’s result [CTS87, 4.1], then we extend it to groups
of multiplicative type (Proposition 2.7 (ii)). Colliot-Thélène and Sansuc defined flasque resolutions of tori
over arbitrary base schemes, yielding several cohomological properties of tori over regular schemes. In
particular, they proved that for a torus T over a semilocal regular ring R with total ring of fractions K,

the map H1
étpR, T q ãÑ H1

étpK,T q is injective, (2.0.1)
which is a stronger version of the Grothendieck–Serre conjecture for tori, see [CTS87, 4.1]. Nevertheless,
if we substitute R in (2.0.1) with a valuation ring V , then the method in ibid. does not work any more
because of the non-Noetherianness of V . Seeking an alternative argument in this case, we induct on the
rank of V and use local cohomology. This case of tori obtained in Proposition 2.7 is crucial for subsequent
steps of the proof of Theorem 1.3, such as for patching torsors (see Propositions 4.5 and 4.7).
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2.1. Group schemes of multiplicative type. For a scheme S and an S-group scheme G, the Cartier
dual of G is an fpqc sheaf DSpGq :“ HomS-gr.pG,Gm,Sq. Recall [SGA 3II, IX, 1.1] that G is of multiplica-
tive type, if every s P S has an fpqc neighborhood U such that GU » DU pMU q “HomU-gr.pMU ,Gm,U q
for a commutative group M . An S-group G of multiplicative type is isotrivial, if there exists a finite étale
surjective morphism S1 Ñ S such that DS1pGS1q is a constant commutative group on each connected
component of S1 ([SGA 3II, IX, 1.4.1]). Assume that S is connected. One can replace S1 by one of its
connected component and apply [SP, 0BN2] to find an S-morphism S2 Ñ S1 of schemes for a Galois
cover S2 of S (by [SGA 1new, V, 5.11], S2 is a connected ΓS-torsor for a finite group Γ). Then, since
Γ has finitely many quotients, there is a minimal Galois cover rS{S such that D

rSpG rSq is constant: the
minimality of rS{S means that there are no nontrivial Galois subcovers rS Ñ rS1 Ñ S such that D

ĂS1
pG

ĂS1
q is

constant. We also say that rS{S is a minimal Galois cover splitting G (or, such that G
rS splits). Moreover,

since S is assumed to be connected, for every geometric point s : Spec Ω Ñ S of S with fundamental
group π :“ πét

1 pS, sq, where Ω is an algebraically closed field, there is an anti-equivalence [SGA 3II, X, 1.2]
"

isotrivial multiplicative
type S-groups

*

„
ÝÑ

"

π-modules with
continuous actions

*

G ÞÑ M pGq :“ DspGsq “ HomΩ-gr.pGs,Gm,sq.

In particular, the category of isotrivial S-tori is anti-equivalent to the category of finite type Z-lattices
with continuous π-actions. So, every isotrivial S-torus T of rank n corresponds to an equivalence class of

representations ρT : π Ñ GLnpZq such that ker ρT Ă π is an open normal subgroup.
If ρT and ρ1T are in the same equivalence class, then ker ρT “ ker ρ1T . The finite quotient Γ :“ π{ ker ρT
then yields a minimal Galois cover rS{S splitting T with Galois group Γ and πét

1 p
rSq » ker ρT . Hence, all

minimal Galois covers splitting T are isomorphic to each other via the Galois group Γ-action.

Lemma 2.2. For an irreducible geometrically unibranch scheme S of function field K and an S-torus T ,
T contains Gkm,S if and only if TK contains Gkm,K .

Proof. It suffices to assume that Gkm,K Ă TK and to deduce that Gkm,S Ă T . Let η be a geometric point
over the generic point SpecK η

Ñ S. We have M pT q “ Homη-gr.pTη,Gm,ηq “ M pTKq. Note that Gkm,K
corresponds to a quotient lattice Λ of M pTKq such that Λ is of rank k with trivial πét

1 pKq-action. On
the other hand, by [SP, 0BQI], the natural map πét

1 pKq� πét
1 pSq is surjective. Therefore, M pT q has a

quotient lattice that has rank k with trivial πét
1 pSq-action. This implies that Gkm,S Ă T . �

Recall [ÉGA I, 2.1.8] that a scheme S is locally integral, if for every s P S, the local ring OS,s is integral.
Hence, by definition, every connected component of S is both an open and closed subset of S. With this
notion, we generalize Grothendieck’s result [SGA 3II, X, 5.16] by relaxing its Noetherian constraint.

Lemma 2.3. For a locally integral, geometrically unibranch scheme S, every S-group scheme M of
multiplicative type and of finite type is isotrivial. In particular, for every torus T over a normal domain
R, there is a minimal Galois cover rR of R such that T

rR splits.

Proof. Since every connected component of S is open, we may assume that S is connected. Then,
M is fpqc locally of the form DpHq for a finite type abelian group H (determined by M). For P :“
IsomS-gr.pM,DSpHqq, our goal is to find a finite étale cover S1 Ñ S such that P pS1q ‰ H. By [SGA 3II, X,
5.8, 5.10 (i)], P is representable by a clopen subscheme of HomS-gr.pM,DSpHqq and there is an étale
surjective morphism rS Ñ S such that P

rS is a disjoint union of copies of rS. In particular, P is S-étale. By
[ÉGA IV4, 18.8.15, 18.10.7], rS is locally integral and geometrically unibranch. We prove the following.

Claim 2.3.1. Every irreducible component Pi of P is finite étale over S.

Proof of the claim. Let η P S be the generic point and let ξi be the generic point of Pi. By [ÉGA IV2, 2.3.4],
the S-flatness of P implies that every ξi lies over η. Therefore, pPiqη is the closure of ξi in Pη. The
quasi-finiteness of P Ñ S implies that Pη is discrete, so we have pPiqη “ tξiu. On the other hand, since
S is integral and geometrically unibranch, by [ÉGA IV4, 18.10.7], all Pi are geometrically unibranch, and

P “
Ů

ξiPPη
Pi.
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Therefore, every Pi is clopen in P . Since it suffices to show that each pPiq rS is rS-finite, note that every
connected component of rS is open, we may assume that rS is connected so that P

rS –
Ů

Ψ
rS for a set Ψ.

Each Pi Ă P satisfies that pPiq rS –
Ů

Φi
rS for a subset Φi Ă Ψ. As pPiqη “ tξiu is a single point, this

forces that Φi is finite. Consequently, the base change pPiq rS is finite over rS, so Pi is S-finite. �

As S is connected and all Pi Ñ S are finite étale, take S1 :“ Pi, whose image is S. The canonical
embedding S1 ãÑ P then induces a section of PS1 Ñ S1, so we get MS1 » DS1pHq, as desired. �

Proposition 2.4. Let X be a connected scheme, let T be an isotrivial X-torus, and let Y Ñ X be a
minimal Galois cover splitting T . For a morphism f : X 1 Ñ X of connected schemes, every connected
component of Y 1 :“ Y ˆX X 1 is a minimal Galois cover splitting TX1 .

Proof. Let Γ :“ AutXpY q be the Galois group of Y {X, then Y is a ΓX -torsor on X, and Y 1 is a ΓX1 -torsor
on X 1. In particular, Γ acts transitively on each X 1-fiber of Y 1, hence induces isomorphisms among
connected components of Y 1. We choose a geometric point η1 Ñ Y 1, and denote its composites as
η Ñ Y , ξ1 Ñ X 1, and ξ Ñ X, respectively. Recall [SP, 0BND] that the fiber functors Fξ : FÉtX „

ÝÑ

Finite-πét
1 pX, ξq-sets and Fξ1 : FÉtX1 „

ÝÑ Finite-πét
1 pX

1, ξ1q-sets are equivalences of categories. Besides,
f induces a continuous homomorphism f˚ : πét

1 pX
1, ξ1q Ñ πét

1 pX, ξq of profinite groups, fitting into the
following commutative diagram

FÉtX FÉtX1

Finite-πét
1 pX, ξq-sets Finite-πét

1 pX
1, ξ1q-sets.

Fξ

base change

Fξ1

f˚

Thus, we have Fξ1pY 1q “ f˚FξpY q “ FξpY q “ Γ set-theoretically and the following short exact sequence
1 Ñ πét

1 pY, ηq Ñ πét
1 pX, ξq Ñ Γ – AutΓ-setpFξpY qq Ñ 1.

By the commutative diagram above, the πét
1 pX

1, ξ1q-action on Fξ1pY 1q is equal to the πét
1 pX

1, ξ1q-action on
FξpY q via the composite πét

1 pX
1, ξ1q

f˚
Ñ πét

1 pX, ξq� Γ, whose image is denoted by Γ1 Ă Γ. The surjection
πét

1 pX
1, ξ1q� Γ1 gives rise to the πét

1 pX
1, ξ1q-set structure on Fξ1pY 1q. Precisely, the πét

1 pX
1, ξ1q-action on

Fξ1pY
1q is just the restriction Γ1 ˆ Γ Ñ Γ of Γˆ Γ Ñ Γ, leading to the coset decomposition for Γ1 Ă Γ

Γ “
Ů

γPΓ1zΓpΓ1 ¨ γq
so that all left Γ1-actions on Γ1 ¨ γ are simply transitive and all Γ1 ¨ γ have the same Γ1-set structure.
Hence, the equivalence Fξ1 : FÉtX1 „

ÝÑ Finite-πét
1 pX

1, ξ1q-sets (combined with [SP, 03SF]) implies that
pΓ1 ¨ γqγPΓ1zΓ correspond to Galois covers pY 1γqγPΓ1zΓ of X 1 that are isomorphic to each other. Further, the
finite πét

1 pX
1, ξ1q-set Fξ1pY 1q corresponds to Y 1, which decomposes into connected components

Y 1 “
Ů

γPΓ1zΓ Y
1
γ ,

where Y 1γ are Galois covers of X 1 with Galois group Γ1. If η1 Ñ Y 1 factors through Y 1γ0
, then the following

1 Ñ πét
1 pY

1
γ0
, η1q Ñ πét

1 pX
1, ξ1q Ñ Γ1 “ GalpY 1γ0

{X 1q Ñ 1
is a short exact sequence. Since the torus T induces a representation ρT : πét

1 pX, ξq Ñ GLpZnq with the
image Γ, where Zn » Homξ-gr.pTξ,Gmq, its base change TX1 induces a representation f˚˝ρT : πét

1 pX
1, ξ1q Ñ

GLpZnq. By construction of Γ1, we have Γ1 “ Impf˚ ˝ ρT q. So the desired minimality of Y 1γ0
amounts to

the equality Γ1 “ πét
1 pX

1, ξ1q{πét
1 pY

1
γ0
, η1q, which follows from the last displayed short exact sequence. �

2.5. Flasque resolution of tori. The concepts of quasitrivial and flasque tori are rooted in two special
Galois modules that serve as character groups: permutation and flasque modules. For a finite group G,
let LG be the category of G-modules that are finite type Z-lattices. If a module M P LG has a Z-basis
on which G acts via permutations, then M is a permutation module; in this case, M » ‘iZrG{His for
certain subgroups Hi Ă G. If a module N P LG satisfies H1pG,HomZpN,Qqq “ 0 for any permutation
module Q, then N is a flasque module. For example, a trivial G-module Q0 P LG is a permutation module
and H1pG,HomZpN,Q0qq “ 0 for any flasque G-module N . For a scheme S and an S-torus T , if every
connected component Z of S has a Galois cover Z 1 Ñ Z with Galois group G splitting T such that the
G-module DSpT qpZ

1q is flasque (resp., permutation), then T is flasque (resp., quasitrivial). When S is
6
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connected, every quasitrivial torus is a finite product of Weil restrictions ResS1i{SpGmq for finite étale
connected covers S1i Ñ S. As proved in [CTS87, Thm. 1.3], for a torus T over a scheme S whose every
connected component is open, there is a short exact sequence of S-tori, that is, a flasque resolution of T :

1 Ñ F Ñ P Ñ T Ñ 1, where F is flasque and P is quasitrivial. (2.5.1)

Lemma 2.6. For a flasque torus F over a valuation ring V of finite rank, the local cohomology vanishes:
H2

mV pV, F q “ 0.

Proof. We denote X “ SpecV and Z “ SpecpV {mV q. Let n ě 1 be the rank of V , then XzZ is the
spectrum of a valuation ring of rank n ´ 1. By excision [Mil80, III, 1.28], we may replace X by its
Henselization Xh. For a variable X-étale scheme X 1 with preimage Z 1 :“ X 1 ˆX Z, let Hq

Zp´, F q be the
étale sheafification of the presheaf X 1 ÞÑ Hq

Z1pX
1, F q. By the local-to-global E2 spectral sequence

Hp
étpX,H

q
ZpX,F qq ñ Hp`q

Z pX,F q, ([SGA 4II, V, 6.4])
to show that H2

ZpX,F q “ 0, it suffices to obtain the following vanishings
H0

étpX,H2
ZpX,F qq “ H1

étpX,H1
ZpX,F qq “ H2

étpX,H0
ZpX,F qq “ 0.

Subsequently, in the following two paragraphs, we calculate Hq
ZpX,F q for 0 ď q ď 2.

Let xÑ X be a geometric point. If x factors through XzZ, then Hq
ZpX,F qx “ 0. Now, we take x as a

fixed geometric point over mV , so Hq
ZpX,F qx “ Hq

mV
pV sh, F q, where V sh is the strict Henselization of V

with the maximal ideal mV . The local map V Ñ V sh of local rings is faithfully flat ([SP, 07QM]) and
preserves value groups ([SP, 0ASK]). Therefore, for the prime p Ă V of height n´ 1, there is a unique
prime ideal P Ă V sh lying over p (that is, pV sh “ P). By [SGA 4II, V, 6.5], we have the exact sequence

¨ ¨ ¨ Ñ Hi
étpV

sh, F q Ñ Hi
étppV

shqP, F q Ñ Hi`1
mV
pV sh, F q Ñ Hi`1

ét pV sh, F q Ñ ¨ ¨ ¨ . (2.6.1)

First, we compute Hq
mV
pV sh, F q when q “ 0 and 2. The injectivity of H0

étpV
sh, F q ãÑ H0

étppV
shqP, F q

and the vanishings of H1
étppV

shqP, F q and Hi
étpV

sh, F q for i “ 1, 2 (see [SP, 03QO]) imply the following
H0

mV
pV sh, F q “ H2

mV
pV sh, F q “ 0. (2.6.2)

This (2.6.2) leads to H0
ZpX,F q “ H2

ZpX,F q “ 0, so we get H0
étpX,H2

ZpX,F qq “ H2
étpX,H0

ZpX,F qq “ 0.

Next, we calculate H1
mV
pV sh, F q. From (2.6.1) we obtain the following short exact sequence:

0 Ñ H0
étpV

sh, F q Ñ H0
étppV

shqP, F q Ñ H1
mV
pV sh, F q Ñ H1

étpV
sh, F q “ 0.

For the Cartier dual DXpF q of F , let Λ :“ DXpF qpV
shq and Λ_ :“ HomZpΛ,Zq. By Cartier duality,

H0
étpV

sh, F q – F
`

V sh˘ – HomV -gr.pDXpF q,GmqpV shq “ HomZpΛ, pV shqˆq – Λ_ bZ pV
shqˆ,

and similarly, H0
étppV

shqP, F q – Λ_ bZ pV
shqˆP.

The value group ΓV sh{P of V sh{P, by Proposition A.2 (v), is isomorphic to pV shqˆP{pV
shqˆ. Therefore,

H1
mV
pV sh, F q “ pΛ_ bZ pV

shqˆPq{pΛ
_ bZ pV

shqˆq – Λ_ bZ ΓV sh{P.

Since X is Henselian local and H1
ZpX,F q is an abelian sheaf on X, by [SGA 4II, VIII, 8.6], we have

H1
étpX,H1

ZpX,F qq – H1pπét
1 pV q, H

1
mV
pV sh, F qq – H1pπét

1 pV q,HomZpΛ,ΓV sh{Pqq. (2.6.3)
To see the action of πét

1 pV q on HomZpΛ,ΓV sh{Pq, by Lemma 2.3, we first note that the πét
1 pV q-action on

Λ factors through its quotient GalpY {Xq, where Y is the minimal Galois cover of X splitting F . Besides,

ΓV sh{P
[SP, 05WS]
““““ ΓpV {pqsh

[SP, 0ASK]
““““ ΓV {p,

so πét
1 pV q acts trivially on ΓV sh{P – FracpV {pqˆ{pV {pqˆ. Thus, the πét

1 pV q-action on HomZpΛ,ΓV {pq
factors through GalpY {Xq. Since πét

1 pV q is a projective limit of finite groups GalpXα{Xq, where Xα

ranges over Galois covers of X, a limit argument [Ser02, I, §2.2, Cor. 1] reduces (2.6.3) to

H1
étpX,H1

ZpX,F qq » lim
ÝÑα

H1`GalpXα{Xq,HomZpΛ,ΓV {pqπ
ét
1 pXαq

˘

. (2.6.4)
We express ΓV {p as a direct limit of finite type Z-submodules pΓiqiPI . Since Λ is Z-finitely presented,

lim
ÝÑiPI

HomZpΛ,Γiq „
ÝÑ HomZpΛ,ΓV {pq. (2.6.5)
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Combining the isomorphism (2.6.5) with a limit argument [Ser02, I, §2.2, Prop. 8], we reduce (2.6.4) to

lim
ÝÑα

H1`GalpXα{Xq, limÝÑiPI
HomZpΛ,Γiqπ

ét
1 pXαq

˘

“ lim
ÝÑα

lim
ÝÑiPI

H1`GalpXα{Xq,HomZpΛ,Γiqπ
ét
1 pXαq

˘

.

It suffices to calculate for a large α0 such that Xα0 splits F . In this situation, πét
1 pXα0q acts trivially

on HomZpΛ,Γiq. Since F is a flasque torus, its character group Λ is a flasque GalpXα0{Xq-module.
As aforementioned, GalpXα0{Xq acts trivially on ΓV {p, so the Γi are finite type Z-lattices with trivial
GalpXα0{Xq-action. The example in §2.5 implies H1pGalpXα0{Xq,HomZpΛ,Γiqq “ 0, which verifies that

H1
étpX,H1

ZpX,F qq “ 0. �

Proposition 2.7. For a valuation ring V and a finite type V -group scheme M of multiplicative type,

(i) H2
fpqcpV,Mq ãÑ H2

fpqcpFracV,Mq is injective; in particular, the restriction of Brauer group

BrpV q ãÑ BrpFracV q is injective;

(ii) H1
fpqcpV,Mq ãÑ H1

fpqcpFracV,Mq is injective.

Proof. As V is a filtered direct union of valuation subrings of finite rank ([BM21, 2.22]), a limit argument
[SGA 4II, VII, 5.7] reduces us to the case when V has finite rank n. Note that for a quasitrivial V -torus
P , we have P »

ś

S1i
ResS1i{ SpecVGm for finite étale connected V -schemes S1i, so [SGA 3III new, XIX, 8.4]

gives an isomorphism H1
étpV, P q –

ś

S1i
H1

étpS
1
i,Gmq. The Grothendieck–Hilbert’s 90 [SGA 3II, VIII, 4.5]

identifies H1
étpS

1
i,Gmq » H1

ZarpS
1
i,Gmq, which are trivial by [BouAC, II, §5, no. 3, Prop. 5]. So we have

H1
étpV, P q “ t˚u for every quasitrivial V -torus P .

(i) First, we reduce to the case for flasque tori. By the short exact sequence [CTS87, 1.3.2]

1 ÑM Ñ F Ñ P Ñ 1,

where F is flasque and P is quasitrivial, we obtain the commutative diagram with exact rows

H1
fpqcpV, P q H2

fpqcpV,Mq H2
fpqcpV, F q

H2
fpqcpFracV,Mq H2

fpqcpFracV, F q,

where H1
fpqcpV, P q “ H1

étpV, P q “ t˚u. Hence, it suffices to prove the assertion for the flasque F .

Next, we induct on the rank n of V . The case of V “ FracV is trivial, so when n ě 1, for the
prime p of V of height n´ 1, we assume that the assertion holds for Vp (which has rank n´ 1).
Denote X “ SpecV and Z “ SpecpV {mV q. By [SGA 4II, V, 6.5], we have the long exact sequence:

¨ ¨ ¨ Ñ H2
ZpX,F q Ñ H2

fpqcpX,F q Ñ H2
fpqcpX ´ Z,F q Ñ H3

ZpX,F q Ñ ¨ ¨ ¨ . (2.7.1)

We conclude by the induction hypothesis and H2
ZpX,F q “ 0 proved in Lemma 2.6.

(ii) We first reduce to the case when M is a torus. The isotriviality of M yields a short exact sequence

1 Ñ T ÑM Ñ µÑ 1,

where T is a V -torus and µ is a finite multiplicative type V -group. For the commutative diagram

µpV q H1
fpqcpV, T q H1

fpqcpV,Mq H1
fpqcpV, µq

µpFracV q H1
fpqcpFracV, T q H1

fpqcpFracV,Mq H1
fpqcpFracV, µq

with exact rows, the valuative criterion for properness of µ leads to µpV q “ µpFracV q and the
injectivity of H1

fpqcpV, µq ãÑ H1
fpqcpFracV, µq. Thus, a diagram chase reduces us to showing that

H1
étpV, T q Ñ H1

étpFracV, T q is injective.
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A flasque resolution of T as (2.5.1) leads to the following commutative diagram with exact rows

H1
étpV, P q H1

étpV, T q H2
étpV, F q

H1
étpFracV, T q H2

étpFracV, F q,

where H1
étpV, P q “ t˚u. Since the map H2

étpV, F q ãÑ H2
étpFracV, F q is injective by (i), the map

H1
étpV, T q ãÑ H1

étpFracV, T q is injective. �

Corollary 2.8. For a flasque torus F over a valuation ring V with fraction field K, the map

H1
étpV, F q

„
ÝÑ H1

étpK,F q is an isomorphism.

Proof. The injectivity follows from Proposition 2.7 (ii). A limit argument reduces us to the case when V
has finite rank, then we iteratively use Lemma 2.6 with the following exact sequence (cf. 2.7.1)

H1
étpV, F q Ñ H1

étpSpecV ztmV u, F q Ñ H2
mV pV, F q “ 0,

to reduce the rank of valuation rings by removing closed points, so the surjectivity follows. �

3. Algebraizations and a Harder-type approximation

The upshot of this section is Proposition 3.19, a higher-height analogue of Harder’s weak approximation
[Har68, Satz. 2.1] to reduce Theorem 1.3 to the case of Henselian rank-one valuation rings. To prove this,
we take advantage of techniques of algebraization from [BČ22, §2] and Conrad’s topologization of points.

3.1. Topologizing R-points of schemes. For a topological ring R and an R-scheme (or R-algebraic
stack) X, the problem of topologizing XpRq functorially in X compatible with the topology of R has
been studied in recent years. Precisely, we expect a topology on XpRq satisfying some of the following

(i) each R-morphism X Ñ X 1 induces a continuous map XpRq Ñ X 1pRq;

(ii) for every integer n ě 0, we have a canonical homeomorphism AnpRq » Rn;

(iii) each closed immersion X ãÑ X 1 induces an embedding XpRq ãÑ X 1pRq;

(iv) each open immersion X ãÑ X 1 induces an open embedding XpRq ãÑ X 1pRq; and

(v) for all R-morphisms X 1 Ñ X Ð X2 of R-schemes, the identifications
pX 1 ˆX X2qpRq “ X 1pRq ˆXpRq X

2pRq are homeomorphisms.

For all affine schemes X of finite type over R, Conrad proved [Con12, Prop. 2.1] that there is a unique
way to topologize XpRq such that (i)–(iii) and (v) are satisfied. Such topologization is realized by taking
a closed immersion X ãÑ AnR and endowing XpRq with the subspace topology from Rn. The resulting
topology is not dependent on the choice of embeddings. For schemes X locally of finite type over R,
topologizing XpRq is reduced to the affine case by patching open affine subschemes of X, which calls
for several extra constraints on R. Namely, under the assumption that R is local and Rˆ Ă R is open
with continuous inversion (e.g., Hausdorff topological fields and arbitrary valuation rings with valuation
topology), Conrad showed [Con12, Prop. 3.1] that there is a unique way to topologize XpRq satisfying
(i)–(v) for all schemes X locally of finite type over R. Subsequently, Česnavičius generalized Conrad’s
result to algebraic stacks (cf. [MB01, Section. 2] for the case of Hausdorff topological fields). Without
the local assumption, if Rˆ Ă R is open with continuous inversion, then XpRq can be topologized for
(ind-)quasi-affine or (sub)projective R-schemes X, see [BČ22, §2.2.7]. Note that all aforementioned results
are generalizations of Conrad’s version, hence they are compatible when restricting the families of X or
of R. Since we only consider schemes, our topologization only involves the following formation of Conrad.

Lemma 3.2 ([Con12, Prop. 3.1]). Let R be a local topological ring such that Rˆ Ă R is open with
continuous inversion. There is a unique way to topologize XpRq satisfying (i)–(v) for all schemes X
locally of finite type over R. Moreover, if R is Hausdorff and X is R-separated, then XpRq is Hausdorff.
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Lemma 3.3 ([Con12, Ex. 2.2]). For any continuous map R1 Ñ R of topological rings and any affine
scheme X of finite type over R, the natural homomorphism XpRq Ñ XpR1q is continuous. Moreover, if
R1 Ă R is closed (resp., open) subring, then XpRq ãÑ XpR1q is a closed (resp., open) embedding.

Definition 3.4. For a topological ring R and a scheme X locally of finite type over R, if XpRq can be
topologized as in §3.1, then we say that XpRq has a topology induced from R. In particular, if there is an
ideal I Ă R such that the topology on R is I-adic, then the induced topology on XpRq is called I-adic.

Now, we apply Conrad’s formation to our case when R is a valued field. Recall §A.3 and Proposition A.4
that for every valued field pK, νq, there is a valuation topology determined by ν and it is Hausdorff. By
A.8, a valued field pK, νq is nonarchimedean, if the valuation topology on K is induced by a nontrivial
rank-one valuation, or equivalently, the valuation ring V pνq of K has a prime of height one.

Lemma 3.5. Let pK, νq be a valued field and let X be a scheme locally of finite type over K.

(i) The set XpKq has a topology induced from the valuation topology on K.

(ii) If X is separated over K, then XpKq is Hausdorff for the valuation topology.

(iii) For the valuation ring V Ă K and an affine finite type V -scheme Y , the natural map Y pV q ãÑ

Y pKq is a closed and open embedding for the valuation topology.

(iv) If K is Henselian nonarchimedean and X is K-smooth, then for the completion pK of K and the
topologies on XpKq and on Xp pKq induced from K and pK respectively, the following map

XpKq Ñ Xp pKq has dense image.

Proof. For (i) and (ii), note that by Proposition A.4, K is Hausdorff so Kˆ Ă K is open. It is clear that
the inversion on Kˆ is continuous for the subspace topology. It suffices to use Lemma 3.2 to topologize
XpKq; moreover, if X is separated over K, then XpKq is Hausdorff for the valuation topology. The
assertion (iii) follows from Lemma 3.3 and Proposition A.4 that the ball V Ă K is closed and open.

For (iv), we recall §A.11 that the topology on K is indeed a-adic for an a P V such that
a

paq is of height
one. Thus pK is the a-adic completion Ka

p

. We then apply [BČ22, 2.2.10 (iii)] and check the conditions:

- Let the topological ring B be K with a-adic topology. Then pB “ Ka
p

and pKa
p

qˆ Ă Ka
p

is an
open subring with continuous inversion.

- Let the nonunital open subring B1 be the ideal paq of the valuation ring V . The induced topology on
paq has an open neighborhood base of zero consisting of ideals panqně1 Ă paq (Proposition A.10 (i)).

- The nonunital ring paq is Henselian in the sense of Gabber ([BČ22, 2.2.1]), that is, every polynomial
fpT q “ TN pT´1q`aNTN`¨ ¨ ¨`a1T`a0 where ai P paq and N ě 1 has a (unique) root in 1`paq.
Because V is Henselian, by [SP, 0DYD], the pair pV, paqq is also Henselian. Hence, Gabber’s
criterion shows that paq is Henselian, so the conditions in [BČ22, 2.2.10 (iii)] are satisfied. �

Lemma 3.6. For a Henselian valued field F ,

(i) every smooth morphism f : X Ñ Y between F -schemes locally of finite type induces an open map
of topological spaces ftop : XpF q Ñ Y pF q;

(ii) for a monomorphism of F -flat locally finitely presented group schemes G1 ãÑ G where G1 is
F -smooth, and the F -algebraic space G2 :“ G{G1, the map GpF q Ñ G2pF q is open.

Proof. For (i), see [GGMB14, 3.1.4] and note that the ‘topological Henselianity’ there yields the desired
openness by loc. cit., 3.1.2. For (ii), see [Čes15, 4.3 (a) and 2.8 (2)], where R is our F . �

In addition to the topological properties above, the following lemma will be used repeatedly in the sequel.

Lemma 3.7. For a topological group G, an open subgroup H Ă G, and a subset S Ă G, we have
S ¨H “ S ¨H.
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Proof. Since S ¨H Ă S ¨H, it suffices to see that S ¨H “ S ¨H. The subset GzpS ¨Hq is a union of giH
for some gi P G, hence is open. In particular, S ¨H is closed, so the assertion follows. �

3.8. Regular sections, Cartan subalgebras and subgroups of type (C). Let R be a ring and let
h be a Lie algebra over R as a locally free module of rank n. The Lie algebra structure (Lie bracket) is a
morphism A : hÑ EndRphq. For any R-algebra R1, the i-th coefficient of the characteristic polynomial of
degree n for B P EndR1phR1q is of the form p´1qn´iTrp^n´iBq, so the i-th coefficient of the characteristic
polynomial is a morphism EndRphqbi Ñ R. Composing Abi with the last morphism, we get

ci : hbi Ñ R,

hence ci P ph_qbi Ă ΓpSym
R
ph_qq. We define the Killing polynomial of h as Phptq :“ tn`c1t

n´1`¨ ¨ ¨`cn P

ΓpSym
R
ph_qqrts. By construction, the formation of Killing polynomials commutes with base change.

When R is a field k, the largest r such that Phptq is divisible by tr is the nilpotent rank of h. The nilpotent
rank of the Lie algebra of a reductive group scheme is étale-locally constant (see [SGA 3II, XV, 7.3] and
[SGA 3III new, XXII, 5.1.2, 5.1.3]). Every a P h satisfying cn´rpaq ‰ 0 is called a regular element. Let
G be a reductive group scheme over a scheme S. For the Lie algebra g of G, if a subalgebra d Ă g is
Zariski-locally a direct summand such that its geometric fiber ds at each s P S is nilpotent and equals
to its own normalizer, then σ is a Cartan subalgebra of g ([SGA 3II, XIV, 2.4]). We say an S-subgroup
D Ă G is of type (C), if D is S-smooth with connected fibers, and LiepDq Ă g is a Cartan subalgebra. A
section σ of g is a regular section, if σ is in a Cartan subalgebra such that σpsq P gs is a regular element
for all s P S. A section of g with regular fibers is quasi-regular, hence regular sections are quasi-regular.

3.9. Schemes of maximal tori. For a reductive group scheme G defined over a scheme S, the functor
TorpGq : Schop

{S Ñ Set, S1 ÞÑ tmaximal tori of GS1u.

is representable by an S-affine smooth scheme ([SGA 3II, XIV, 6.1]). For an S-scheme S1 and a maximal
torus T P TorpGqpS1q of GS1 , by [SGA 3III new, XXII, 5.8.3], the morphism defined by conjugating T

GS1 Ñ TorpGS1q, g ÞÑ gTg´1 (3.9.1)
induces an isomorphism GS1{NormGS1

pT q – TorpGS1q. Here, NormGS1
pT q is an S1-smooth scheme (see

[SGA 3II, XI, 2.4bis]). Now, we establish the following lifting property of TorpGq.

Lemma 3.10. Let G be a reductive group scheme over a local ring R with residue field κ and Z the
center of G. If the cardinality of κ is at least dimpG{Zq, then the following map is surjective:

TorpGqpRq� TorpGqpκq.

Proof. An isomorphism [SGA 3II, XII, 4.7 c)] of schemes TorpGq » TorpG{Zq reduces us to the semisimple
adjoint case, where the maximal tori of G are exactly the subgroups of type (C) ([SGA 3II, XIV, 3.18]).
These subgroups are bijectively assigned by D ÞÑ LiepDq to the Cartan subalgebras of g :“ LiepGq, see
ibid., 3.9. It suffices to lift a Cartan subalgebra cκ Ă gκ to that of g. Since 7κ ě dimpG{Zq “ dimpGq,
by [Bar67, Thm. 1], cκ is of the form Nilpaκq :“

Ť

n kerpadpanκqq for some aκ P cκ. Hence [SGA 3II, XIII,
5.7] implies that each aκ P cκ is a regular element of gκ. We take a section a of g passing through aκ
and claim that V :“ ts P SpecR | as P gs is regularu is an open subset of SpecR. We may assume that
R is reduced. Since the nilpotent rank of g is locally constant, the Killing polynomial of g at every
s P SpecR is uniformly of the form Pgsptq “ trptn´r ` pc1qst

n´r´1 ` ¨ ¨ ¨ ` pcn´rqsq such that pcn´rqs is
nonzero. Thus, the regular locus in g is the principle open subset tcn´r ‰ 0u ĂWpgq. The morphism
Wpgq Ñ SpecR is flat, so V ‰ H is open, forcing that V “ SpecR. In particular, the regular elements
aκ P cκ lifts to a quasi-regular section a P g, which by [SGA 3III new, XIV, 3.7], is regular. By definition
of regular sections, there is a Cartan subalgebra of g containing a and is the desired lifting of cκ. �

Next, we combine this lifting property with techniques of algebraization to deduce the density Lemma 3.15.
The next pages will deal with localizations, a-adic topology and completions of valuation rings. It is
therefore recommended that readers refer to the Appendix A, especially §A.9 and Proposition A.10.

3.11. Rings of Cauchy sequences. To the best of our knowledge, it is Gabber who first considered
rings of Cauchy sequences (see also its generalization to Cauchy nets [BČ22, 2.1.12]). In this article, we
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take only one particular form to suit our need. Concretely, for a ring A and a t P A such that 1` t Ă Aˆ,
consider the truncated Cauchy sequences paN qNěn in Ar 1t s for an n ě 0. With termwise addition and
multiplication, all truncated Cauchy sequences form a ring CauchyěnpAr 1t sq. With this concept, one can
translate the approximation process into certain operations on rings of Cauchy sequences and thus grasp
the approximation properties through the algebrogeometric properties of the ring CauchyěnpAr 1t sq.

3.12. Setup. In the sequel, consider the subcase of §3.11: let A “ V be a valuation ring of rank n and let
t “ a lie in mV zp for the prime p of height n´ 1. By Proposition A.10, V r 1

a s and the a-adic completion
V a
p

are valuation rings of ranks n ´ 1 and 1 respectively, and the a-adic completion V r 1
a s
a

p of V r 1
a s is

Ka
p

:“ Frac V a
p

. By Corollary A.12 and Proposition A.13, Ka
p

is nonarchimedean and V a
p

is a Henselian
local ring. For every Ka

p

-scheme X locally of finite type, we will endow XpKa
p

q with the a-adic topology.

Lemma 3.13. For the setup §3.12, the lim
ÝÑmě0 CauchyěmpV r 1

a sq is a local ring with residue field Ka
p

.

Proof. Taking a-adic completion of V r 1
a s yields the following surjection map

A :“ lim
ÝÑmě0 CauchyěmpV r 1

a sq� Ka
p

,

whose kernel is denoted by I. For any sequence pbN qN P I, its tail lies in ImpamV Ñ V r 1
a sq for all m ą 0,

so the tail of p1` bN qN consists of units in V that lie in Impp1` amV q Ñ V r 1
a sq. Since V r

1
a s is local, the

tail of p1` bN qN is termwise invertible in V r 1
a s and the inverses form a Cauchy sequence. Since I Ă A is

an ideal such that A{I is a field and 1` I is invertible, A is a local ring with residue field Ka
p

. �

Example 3.14. Consider the setup §3.12. Then Proposition A.4 implies that V a
p

Ă Ka
p

is open and
closed. Let G be a reductive V -group scheme and recall TorpGq (§3.9). By Lemma 3.5 (iii), the subsets
GpV a
p

q Ă GpKa
p

q and TorpGqpV a
p

q Ă TorpGqpKa
p

q are a-adically open and closed.

Lemma 3.15. Consider the setup §3.12. For a reductive V -group scheme G,

the image of TorpGqpV r 1
a sq Ñ TorpGqpKa

p

q is a-adically dense.

Proof. As shown in Lemma 3.13, the ring lim
ÝÑmě0 CauchyěmpV r 1

a sq is local with residue field Ka
p

. Since
TorpGq is finitely presented and affine over V r 1

a s, the lifting Lemma 3.10 leads to a surjection below

lim
ÝÑmě0

`

TorpGq
`

CauchyěmpV r 1
a sq

˘˘

» TorpGq
`

lim
ÝÑmě0

`

CauchyěmpV r 1
a sq

˘˘

� TorpGqpKa
p

q.

Due to this surjection, all elements in TorpGqpKa
p

q are limits of Cauchy sequences in TorpGqpV r 1
a sq, hence

the image of the map TorpGqpV r 1
a sq Ñ TorpGqpKa

p

q is a-adically dense in TorpGqpKa
p

q. �

Roughly speaking, this density permits us to “replace” maximal tori of G
xKa by those of GV r 1

a s
. Next,

we obtain openness of certain maps, then take images to construct an open normal subgroup of GpKa
p

q

contained in the closure of the image of GpV r 1
a sq Ñ GpKa

p

q. First, recall some criteria for openness.

Lemma 3.16. Consider the setup §3.12. Let T be a torus over V r 1
a s.

(i) There is a minimal Galois cover R of V r 1
a s splitting T (see §2.1), and we have isomorphisms

RbV r 1
a s
Ka
p

» Ra
p

»
śr
i“1 Li,

where Ra
p

is the a-adic completion of R for the topology induced from V r 1
a s. Each Li{Ka

p

is a
minimal Galois extension splitting T

xKa and is a-adically complete; in particular, any minimal
Galois extension L0{K splitting T

xKa is isomorphic to Li for all i, that is, L0 » Li » Lj for i ‰ j.

(ii) For a minimal Galois field extension L0{K
a
p

splitting T
xKa , the image U of the norm map

N
L0{xKa : T pL0q Ñ T pKa

p

q

is a-adically open in T pKa
p

q and contained in the closure T pV r 1
a sq of ImpT pV r 1

a sq Ñ T pKa
p

qq.
12



Proof.

(i) The existence of a minimal Galois cover R{V r 1
a s splitting T follows from Lemma 2.3. Since R

is a finite flat V r 1
a s-module, it is free and we have Ra

p

» R bV r 1
a s
Ka
p

»
śr
i“1 Li, where Li are

a-adically complete fields. By Proposition 2.4 and §2.1 we conclude.

(ii) First, we prove that U is a-adically open. For the norm map Res
L0{xKapTL0q Ñ T

xKa , its kernel
T is a torus: after some base change, T

xKa splits as Gkm, so the associated Z-module of the
corresponding base change of T is the following Z-lattice with a trivial Galois action

Coker
`

Zk Ñ ZrGalpL0{K
a
p

qsk, pniq ÞÑ pni ¨ idq
˘

» ZrGalpL0{K
a
p

q ´ tidusk.

So, by [SGA 3II, IX, 2.1 e)], as a torus, the kernel T is Ka
p

-smooth. By Lemma 3.6 (ii), the map
N
L0{xKa : T pL0q Ñ T pKa

p

q, i.e. pRes
L0{xKaTL0qpK

a
p

q Ñ
`

pRes
L0{xKaTL0q{T

˘

pKa
p

q

is a-adically open so the image U “ N
L0{xKapT pL0qq Ă T pKa

p

q is a-adically open.

Next, we prove that U Ă T pV r 1
a sq. The isomorphism Ra

p

–
śr
i“1 Li obtained in (i) implies that

the image of Rˆ Ñ
śr
i“1 L

ˆ
i is a-adically dense. As TR is split, the image of the composite

T pRq Ñ
śr
j“1 T pLjq

pr1
Ñ T pL1q – T pL0q

is a-adically dense. Composing this with N
L0{xKa , we see that T pRq has dense image in

U “ N
L0{xKapT pL0qq. The composite T pRq Ñ T pL0q Ñ T pKa

p

q factors through the norm
map NR{V r 1

a s
: T pRq Ñ T pV r 1

a sq, so the image of T pV r 1
a sq is dense in U , that is U Ă T pV r 1

a sq. �

Subsequently, we approximate the Ka
p

-points of a maximal torus of G
xKa by using V r 1

a s-points.

Lemma 3.17. Consider the setup §3.12. For a reductive V -group scheme G, the closure GpV r 1
a sq of the

image of GpV r 1
a sq Ñ GpKa

p

q, a maximal torus T of G
xKa with minimal splitting field L0, and

the norm map N
L0{xKa : T pL0q Ñ T pK

a
p q,

the image U “ N
L0{xKapT pL0qq is an a-adically open subgroup of T pKa

p

q and is contained in GpV r 1
a sq.

Proof. The a-adically open aspect of the assertion follows from Lemma 3.16 (ii) because the arguments
there, by base change, apply to all Ka

p

-tori as well. The proof for U Ă GpV r 1
a sq proceeds as follows.

(i) Since Ka
p

is Henselian, by a criterion for openness Lemma 3.6 (ii), the following map from (3.9.1)
φ : GpKa

p

q Ñ TorpGqpKa
p

q, g ÞÑ gTg´1 is a-adically open.
Consequently, φ sends every a-adically open neighborhood W of id P GpKa

p

q to an a-adically open
neighborhood of T . The density Lemma 3.15 of TorpGqpV r 1

a sq in TorpGqpKa
p

q implies that

φpW q X ImpTorpGqpV r 1
a sq Ñ TorpGqpKa

p

qq ‰ H.

Hence, there are a torus T 1 P TorpGqpV r 1
a sq and a g PW such that gTg´1 “ T 1

xKa
P φpW q.

(ii) For any u P U , the map σu : GpKa
p

q Ñ GpKa
p

q defined by g ÞÑ g´1ug is continuous. Let
W :“ σ´1

u pUq. By the construction in (i), there are a w P W and a torus T 1 P TorpGqpV r 1
a sq

such that wTw´1 “ T 1
xKa

. Note that u P wUw´1 “ γN
L0{xKapT pL0qqγ

´1, which by transport
of structure, is equal to N

L0{xKapT
1
xKa
pL0qq. By Lemma 3.16, the last term is contained in

ImpT 1pV r 1
a sq Ñ T 1pKa

p

qq, so is contained in GpV r 1
a sq. �

Corollary 3.18. Consider the setup §3.12 and a reductive V -group scheme G, we have

Im
`

TorpGqpV a
p

q Ñ TorpGqpKa
p

q
˘

Ă Im
`

TorpGqpV q Ñ TorpGqpKa
p

q
˘

.

More precisely, for every maximal torus T of G
pV a and every a-adically open neighborhoodW of id P GpKa

p

q,
there exist a maximal torus T0 of G and a g PW such that pT0q

xKa “ gT
xKag

´1.
13



Proof. By the argument (i) for Lemma 3.17, φpW q X TorpGqpV a
p

q is an a-adically open neighborhood of
T
xKa P TorpGqpKa

p

q. Since V » V r 1
a s ˆxKa V

a
p

(Proposition A.10 (vii)) and TorpGq is affine, we get

TorpGqpV q „
ÝÑ TorpGqpV r 1

a sq ˆTorpGqpxKaq
TorpGqpV a

p

q.

By Lemma 3.15, the image of TorpGqpV r 1
a sq Ñ TorpGqpKa

p

q is a-adically dense, so we have

φpW q X TorpGqpV a
p

q X ImpTorpGqpV r 1
a sqq ‰ H,

giving a maximal torus T0 P TorpGqpV q and g PW such that pT0q
xKa “ gT

xKag
´1 P φpW q. �

Next, we prove Proposition 3.19 by constructing an open subgroup in the closure of GpV r 1
a sq. By lumping

together the approximations in toral cases (Lemma 3.17), the resulting open subgroup is normal. This
normality is crucial for the dynamic argument for root groups for the product formula Proposition 4.5.

Proposition 3.19. Consider the setup §3.12. For a reductive V -group scheme G, the closure GpV r 1
a sq

of the image of GpV r 1
a sq Ñ GpKa

p

q contains an a-adically open normal subgroup N of GpKa
p

q.

Proof. In the proof, all open subsets without the word ‘Zariski’ refer to a-adically open subsets.

(i) Fix a maximal torus T Ă G
xKa . We denote by g the Lie algebra of G

xKa and by h the Lie algebra
of T . For each g P G

xKa and the subspace gadpgq Ă g fixed by adpgq, by [SGA 3II, XIII, 2.6 b)],
dim gadpgq ě dimT . Let regular locus Greg Ă G

xKa be the subscheme of all g P G
xKa that satisfy

dimpgadpgqq “ dimT . By [SGA 3II, XIII, 2.7], Greg is Zariski open. By the following equation
dimpgadpgqq “ dimphadpgqq ` dimppg{hqadpgqq,

an element t P T is regular in G
xKa (namely, t P T reg :“ Greg X T ) if and only if pg{hqadptq “ 0.

(ii) Recall L0 and the open subgroup U Ă T pKa
p

q in Lemma 3.17, we claim that U X T regpKa
p

q ‰ H.
Consider the norm map Nm: Res

L0{xKapTL0q Ñ T . Note that TL0 » Gkm,L0
is isomorphic to a

Zariski dense open subset of AkL0
, so Res

L0{xKapTL0q is also a Zariski dense open subset of Amk
xKa

for
m :“ rL0 : Ka

p

s. The field Ka
p

is infinite, so we have
`

Res
L0{xKapTL0q

˘

pKa
p

q XNm´1
pT regqpKa

p

q ‰

H. Applying Nm to this nonempty intersection, we proved our claim that U X T regpKa
p

q ‰ H.

(iii) For a fixed t0 P U XT regpKa
p

q, by (i), we have pg{hqadpt0q “ 0. So [SGA 3II, XIII, 2.2] implies that
f : G

xKa ˆ T Ñ G
xKa , pg, tq ÞÑ gtg´1

is smooth at pid, t0q. Thus, there is a Zariski open neighborhoodW of pid, t0q such that f |W : W Ñ

G
xKa is smooth. By Lemma 3.6 (i), W pKa

p

q Ñ GpKa
p

q is open. Thus the open neighborhood
W 1 :“ W pKa

p

q X pGpKa
p

q ˆ Uq of pid, t0q has open image under ftop. The G
xKa-translations

τh : pg, tq ÞÑ phg, tq for h P G
xKa induce automorphisms of G

xKa ˆ T , so f is also smooth at ph, t0q.
Similar to above, all GpKa

p

q-translations of W 1 have open images under ftop. So, there is an
open subset U0 Ă U such that E :“ fpGpKa

p

q ˆ U0q is open. Let N be the subgroup of GpKa
p

q

generated by E. The openness of E implies that N is an open subgroup of GpKa
p

q.

(iv) As E is stable under GpKa
p

q-conjugation, N is normal in GpKa
p

q. For each g P GpKa
p

q, we denote
T g :“ gTg´1. Then Ug :“ N

L0{xKapT
gpL0qq satisfies Ug “ gUg´1. Lemma 3.17 applies to T g and

gives Ug Ă GpV r 1
a sq. Thus E Ă

Ť

gPGpxKaq
Ug Ă GpV r 1

a sq. Since E generates N , we obtain

N Ă GpV r 1
a sq. �

Corollary 3.20. With the notations in Proposition 3.19, GpV r 1
a sq is an open subgroup of GpKa

p

q and

GpV r 1
a sq ¨GpV

a
p

q “ Im
`

GpV r 1
a sq Ñ GpKa

p

q
˘

¨GpV a
p

q.

Proof. The image of GpV r 1
a sq Ñ GpKa

p

q is a subgroup of GpKa
p

q, hence so is its closure GpV r 1
a sq. Since

GpV r 1
a sq contains the open subset N , it is an open subgroup of GpKa

p

q. Recall Example 3.14 that the
subgroup GpV a

p

q Ă GpKa
p

q is open and closed. By Lemma 3.7, the desired equation follows. �
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4. Passage to the Henselian rank one case: patching by a product formula

The aim of this section is to reduce Theorem 1.3 to the case when V is a Henselian valuation ring of rank
one. The key of our reduction Proposition 4.7 is the product formula Proposition 4.5 for patching torsors:

GpKa
p

q “ Im
`

GpV r 1
a sq Ñ GpKa

p

q
˘

¨GpV a
p

q.

To show this product formula, we use the Harder-type weak approximation Proposition 3.19.

First, we recall a criterion for anisotropicity [SGA 3III new, XXVI, 6.14], which is practically useful.

Lemma 4.1. A reductive group scheme G over a semilocal connected scheme S is anisotropic if and
only if G has no proper parabolic subgroup and radpGq contains no copy of Gm,S.

Precisely, to determine whetherG is anisotropic, we consider the functor parametrizing parabolic subgroups

ParpGq : Schop
{S Ñ Set, S1 ÞÑ tparabolic subgroups of GS1u,

which is representable by a smooth projective S-scheme (see [SGA 3III new, XXVI, 3.5])1. Note that G is
also an element in ParpGqpSq; we denote this non-proper parabolic subgroup by ˚ P ParpGqpSq.

Recall A.8 and §A.11 that a valued field K is nonarchimedean if its valuation ring V has a height-one
prime ideal p1. The completion pK equals the a-adic completion Ka

p

of K for an a P p1zt0u.

Lemma 4.2. For a Henselian nonarchimedean valued field K with its completions pK, a reductive V -group
scheme G, and the valuation topology on ParpGqp pKq induced from pK,

(i) the image of ParpGqpKq Ñ ParpGqp pKq is dense;

(ii) let V Ă K and pV Ă pK be the valuation rings, if ParpGqppV q ‰ t˚u, then ParpGqpV q ‰ t˚u.

Proof. The assertion (i) follows from Lemma 3.5 (iv). If ParpGqppV q ‰ t˚u, then the valuative criterion for
the separatedness of ParpGq implies that ParpGqp pKq contains an x ‰ ˚. By Lemma 3.5 (ii), ParpGqp pKq is
Hausdorff so x has an open neighborhood Ux that excludes ˚. The density of the image of ParpGqpKq Ñ
ParpGqp pKq shown in (i) yields an y P ParpGqpKq whose image is contained in Ux. Therefore, y ‰ ˚ and
ParpGqpKq ‰ t˚u. By the valuative criterion for the properness of ParpGq over V , we conclude. �

The following Proposition 4.3 generalizes [Pra82, Theorem (BTR)] to valuation rings of higher rank. For
a reductive group scheme H over a scheme S, the S-split rank of G is the largest k such that Gkm,S Ă G.
In particular, for any S-scheme S1, the HS1 is anisotropic if and only if it has zero S1-split rank.

Proposition 4.3. Let G be a reductive group scheme over a valuation ring V with fraction field K.

(a) A parabolic subgroup P Ă G is minimal if and only if the parabolic subgroup PK Ă GK is minimal.

(b) The V -split rank of G equals the K-split rank of GK .

(c) If K is Henselian nonarchimedean, then for the completion pV of V and a minimal parabolic
subgroup P Ă G, the base change P

pV is a minimal parabolic subgroup of G
pV .

(d) If K is Henselian nonarchimedean, then for the completion pV of V ,

the V -split rank of G equals the pV -split rank of G
pV .

(e) If K is Henselian and V ‰ K, then G is anisotropic if and only if GpV q “ GpKq.

Proof.

1For the formation of ParpGq, the base scheme S does not have to be connected.
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(a) If PK is minimal, then any minimal parabolic subgroup Q of G contained in P satisfies QK “ PK .
The valuative criterion for the separatedness of ParpGq over V implies that Q “ P , so P is
minimal. Now, we assume that P Ă G is minimal. If there is a minimal parabolic subgroup Q
of GK contained in PK , then the valuative criterion for the properness of ParpGq lifts Q to a
parabolic rQ Ă G, which must be minimal. Then, by [SGA 3III new, XXVI, 5.7 (ii)], two minimal
parabolics rQ and P are conjugated by an element of GpV q, which forces that PK “ Q is minimal.

(b) When G is a V -torus, we note that Lemma 2.2 suffices. In the general case, we reduce to this
case of tori. Let L be a Levi subgroup of a minimal parabolic P Ă G and denote by radpLqsplit
the maximal V -split subtorus of radpLq. By [SGA 3III new, XXVI, 6.16], the V -split rank of G is
equal to dimpradpLqsplitq. By (a), PK is still a minimal parabolic subgroup of GK thereby op. cit.
applies: the K-split rank of G is equal to dimpradpLKqsplitq. So we are reduced to the known toral
case ([SGA 3III new, XXII, 4.3.6]) dimpradpLqsplitq “ dimppradpLqKqsplitq for the V -torus radpLq.

(c) Let L be a Levi subgroup of P , then L
pV is a Levi subgroup of P

pV . By [SGA 3III new, XXVI, 1.20],
the set ParpLqppV q is the set of parabolics of G

pV that are contained in P
pV and ParpLqpV q is the

set of parabolics of G that are contained in P . Hence, we conclude by Lemma 4.2 (ii).

(d) For a Levi subgroup L of a minimal parabolic subgroup P of G, by (c), L
pV is a Levi subgroup of

the minimal parabolic subgroup P
pV of G

pV . Therefore, a similar argument in (b) reduces us to
the case when G is a V -torus T . Taking the quotient of T by its maximal split subtorus Tsplit, we
may assume that T is anisotropic. Consider the following functor ([SGA 3II, X, 5.6])

X˚pT q : Schop
{V Ñ Set, R ÞÑ HomR-gr.pTR,Gm,Rq,

which is representable by an étale locally constant group scheme. Since T is isotrivial (Lemma 2.3),
by [SGA 3III new, XXVI, 6.6], the propertyX˚pT qpRq ‰ 0 is equivalent to that TR contains a copy of
Gm,R. If X˚pT qppV q ‰ 0, then by Proposition A.10 (vi), the sets X˚pT qpV {mV q “ X˚pT qppV {m

pV q

contain nonzero elements. Since V is Henselian and X˚pT q is V -smooth, we have the surjection

X˚pT qpV q� X˚pT qpV {mV q ‰ 0.

Thus T contains a copy of Gm,V , which is in contradiction to the anisotropic assumption on T .
This contradiction shows that X˚pT qppV q “ 0, namely, T

pV is also anisotropic, hence we conclude.

(e) If we have GpKq “ GpV q, then it is impossible for G to contain a Gm,V because Kˆ “ GmpKq Ă
GpKq strictly contains V ˆ “ GmpV q Ă GpV q. Therefore, G is anisotropic. Now assume that
G is anisotropic and we show that GpKq “ GpV q. By [BM21, 2.22], V is a filtered direct
union of valuation subrings Vi of finite rank, such that each Vi Ñ V is a local ring map. By
[ÉGA IV4, 18.6.14 (ii)], V is a filtered direct union of Henselian valuation subrings V h

i of finite
rank. Similarly, K is a filtered direct union of Kh

i :“ FracpV h
i q. Since G is finitely presented

over V , there is an index i0 and an affine group scheme Gi0 smooth and finitely presented
([Nag66, Thm. 3’]) over V h

i0
such that Gi0 ˆVi0 V » G. Further, by [Con14, 3.1.11], Gi0 and hence

pGiqiěi0 are reductive group schemes. It is clear that all pGiqiěi0 are anisotropic. By a limit
argument [SP, 01ZC], we have GpV q “ lim

ÝÑiěi0
GpV h

i q and GpKq “ lim
ÝÑiěi0

GpKh
i q. Subsequently,

it remains to prove the case when V is Henselian of finite rank n.

First, we prove the case when V is of rank one. For a P mV zt0u, we form the a-adic completion V a
p

of V with Ka
p

:“ Frac V a
p

. By (d), G
pV a is anisotropic. For the nonarchimedean complete valued

field Ka
p

, by [Mac17, Thm. 1.1], GpV a
p

q is a maximal bounded2 subgroup of GpKa
p

q. On the other
hand, a result of Bruhat–Tits–Rousseau [Rou77, Thm. 5.2.3] (or [BTII, p. 156, Rem.]) shows that
GpKa
p

q is bounded. Consequently, we have GpV a
p

q “ GpKa
p

q. The rank-one assumption ensures
that V ãÑ V a

p

is injective ([FK18, Ch. 0, Thm. 9.1.1 (2)]), so the map GpV q ãÑ GpV a
p

q is injective.
The equality V “ K ˆ

xKa V
a
p

(Proposition A.10 (vii)) and the affineness of G yield a bijection

GpV q
„
ÝÑ GpKq ˆ

GpxKaq
GpV a
p

q – GpKq.

2Recall from [BTII, 1.7.3 f) or 4.2.19] (cf. [BLR90, Ch. 1, Def. 2]) that for a valued field pK, νq and a K-scheme
X, a subset P Ă XpKq is bounded, if for all f P KrXs, we have infxPP νpfpxqq ą ´8. For instance, the subset
Zp Ă Qp is bounded because νpZpq ě 0; the subset tp´n

uně1 is not bounded because νpp´n
q “ ´n tends to ´8.
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When V is of rank n ą 1, we assume the assertion holds for the case of rank ď n´ 1 and prove
by induction. For the prime p Ă V of height n´ 1, by Proposition A.2 (vii), the localization Vp
and the quotient V {p are Henselian valuation rings. Due to Proposition A.10 (iv), the rank of
V {p is one and the rank of Vp is n´ 1. Since V is Henselian, sections of ParpGq and X˚pradpGqq
over V {mV lift over V . Hence, GV {mV is anisotropic and so is GV {p. As G is anisotropic, by (b),
so are GK and GVp

. By the settled rank-one case and the induction hypothesis, we have

GpV {pq “ GpVp{pVpq and GpVpq “ GpKq. (4.3.1)

The affineness of G and the isomorphism V
„
ÝÑ Vp ˆVp{pVp

V {p lead to the isomorphism

GpV q
„
ÝÑ GpVpq ˆGpVp{pVpq GpV {pq. (4.3.2)

Therefore, the combination of (4.3.2) and (4.3.1) gives us the desired equation GpV q “ GpKq. �

The following lemma provides the version for tori of the product formula.

Lemma 4.4. For a valuation ring V of rank n ą 0, the prime p Ă V of height n ´ 1, an element
a P mV zp, the a-adic completion V a

p

with Ka
p

:“ Frac V a
p

, and a V -torus T , we have the product formula

T pKa
p

q “ Im
`

T pV r 1
a sq Ñ T pKa

p

q
˘

¨ T pV a
p

q.

Proof. The left-hand side contains the right-hand side, so it remains to show that every element of T pKa
p

q

is a product of elements of Im
`

T pV r 1
a sq Ñ T pKa

p

q
˘

and T pV a
p

q. Consider the commutative diagram

0 T pV q T pV r 1
a sq

H1
V {paqpV, T q H1pV, T q H1pV r 1

a s, T q

0 T pV hq T pV hr 1
a sq

H1
V h{paqpV

h, T q H1pV h, T q H1pV hr 1
a s, T q

0 T pV a
p

q T pKa
p

q H1
pV a{paq

pV a
p

, T q H1pV a
p

, T q H1pKa
p

, T q,

where V h is the Henselization of V and the rows are exact sequences of local cohomology [SGA 4II, V,
6.5.3]. By [SP, 0F0L], V h is also the a-Henselization of V , hence the a-adic completion of V h is V a

p

(see
[FK18, 0, 7.3.5]). By the tori case Proposition 2.7, the three horizontal morphisms in the two rightmost
squares are injective. The excision [Mil80, III, 1.28] combined with a limit argument yield an isomorphism
H1
V {paqpV, T q – H1

V h{paqpV
h, T q. Therefore, a diagram chase gives the following decomposition

T pV hr 1
a sq “ Im

`

T pV r 1
a sq Ñ T pV hr 1

a sq
˘

¨ T pV hq. (4.4.1)

By [BČ22, 2.2.17], the image of T pV hr 1
a sq Ñ T pKa

p

q is dense. The openness of T pV a
p

q Ă T pKa
p

q provided
by Lemma 3.5 (iii), and Lemma 3.7 imply that

Im
`

T pV hr 1
a sq Ñ T pKa

p

q
˘

¨ T pV a
p

q “ Im
`

T pV hr 1
a sq Ñ T pKa

p

q
˘

¨ T pV a
p

q “ T pKa
p

q. (4.4.2)

Combining (4.4.1) and (4.4.2), we obtain the product formula for the case of tori. �

Proposition 4.5. For a valuation ring V of rank n ą 0, the prime p Ă V of height n´ 1, an element
a P mV zp, the a-adic completion V a

p

of V with Ka
p

:“ Frac V a
p

, a reductive V -group scheme G, the
subgroup GpV a

p

q Ă GpKa
p

q and the image ImpGpV r 1
a sqq of the map GpV r 1

a sq Ñ GpKa
p

q, we have

GpKa
p

q “ Im
`

GpV r 1
a sq

˘

¨GpV a
p

q.

Proof. The right-hand side is contained in the left-hand side, so it remains to show that every element of
GpKa
p

q is a product of elements of Im
`

GpV r 1
a sq

˘

and GpV a
p

q. The proof is divided into two cases.

Case 1: without proper parabolic subgroups
17
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The case when G
pV a is anisotropic follows from Proposition 4.3 (e). If G

pV a contains no proper parabolic
subgroup and radpG

pV aq contains a nontrivial split torus of G
pV a , we consider the commutative diagram

0 radpGqpV a
p

q GpV a
p

q pG{ radpGqqpV a
p

q H1pV a
p

, radpGqq

0 radpGqpKa
p

q GpKa
p

q pG{ radpGqqpKa
p

q H1pKa
p

, radpGqq

(4.5.1)

with exact rows, where the equality follows from Lemma 4.1 and Proposition 4.3 (e). Since radpG
pV aq is

a torus, by Proposition 2.7, the last vertical arrow is injective. Thus, a diagram chase gives GpKa
p

q “

radpGqpKa
p

q ¨GpV a
p

q so the product formula for radpGq (Lemma 4.4) leads to the assertion.

Case 2: with a proper parabolic subgroup

By Lemma 4.1, the remaining case is when G
pV a contains a proper parabolic subgroup. For a minimal

parabolic subgroup P of G
pV a , denote its unipotent radical by U :“ radupP q. As exhibited in [SGA 3III new,

XXVI, 6.11], the centralizer of a maximal split torus T Ă P in G
pV a is a Levi subgroup L of P . By ibid.,

2.4 ff., there is a maximal torus rT Ă G
pV a containing T . The proof proceeds as the following steps.

Step 1: for the maximal split subtorus T of P , we have T pKa
p

q Ă ImpGpV r 1
a sqq ¨GpV

a
p

q. The base change
pT :“ rT

xKa is a maximal torus of G
xKa . For rT we apply Corollary 3.18 to W :“ ImpGpV r 1

a sqq XGpV
a
p

q, so
there are a g PW and a maximal torus T0 Ă G such that pT0q

xKa “ g pTg´1. The product formula for tori
(Lemma 4.4) shows that T0pK

a
p

q “ Im
`

T0pV r
1
a sq

˘

¨ T0pV
a
p

q. Hence we get

pT pKa
p

q “ g´1T0pK
a
p

qg “ g´1Im
`

T0pV r
1
a sq

˘

¨ T0pV
a
p

qg Ă g´1Im
`

GpV r 1
a sq

˘

¨GpV a
p

qg. (4.5.2)

Since g P Im
`

GpV r 1
a sq

˘

X GpV a
p

q, (4.5.2) implies that pT pKa
p

q Ă Im
`

GpV r 1
a sq

˘

¨ GpV a
p

q. Note that
Corollary 3.20 gives us ImpGpV r 1

a sqq ¨GpV
a
p

q “ ImpGpV r 1
a sqq ¨GpV

a
p

q. Consequently, we get

T pKa
p

q Ă rT pKa
p

q “ pT pKa
p

q Ă Im
`

GpV r 1
a sq

˘

¨GpV a
p

q. (4.5.3)

Step 2: we prove that UpKa
p

q Ă Im
`

GpV r 1
a sq

˘

. The maximal split torus T acts on G
pV a via the map

T ˆG
pV a Ñ G

pV a , pt, gq ÞÑ tgt´1,

inducing a weight decomposition LiepG
pV aq “

À

αPX˚pT q LiepG
pV aq

α, where X˚pT q is the character lattice
of T . The subset Φ Ă X˚pT q ´ t0u such that LiepG

pV aq
α ‰ 0 is the relative root system of pG

pV a , T q. By
[SGA 3III new, XXVI, 6.1; 7.4], LiepLq is the zero-weight space of LiepG

pV aq and the set Φ` of positive
roots fits into the decomposition

LiepP q “ LiepLq ‘
`
À

αPΦ` LiepG
pV aq

α
˘

with LiepUq “
À

αPΦ` LiepG
pV aq

α.

Let rK{Ka
p

be a Galois field extension splitting G
pV a . By ibid., 2.4 ff., there is a split maximal torus

T 1 Ă L
ĂK
Ă P

ĂK
of G

ĂK
containing T

ĂK
. The centralizer of T 1 in G

ĂK
is itself, which is also a Levi subgroup

of a Borel rK-subgroup B Ă P
ĂK
. The adjoint action of T 1 on G

ĂK
induces a decomposition LiepG

ĂK
q “

À

αPX˚pT 1q LiepG
ĂK
qα, whose coarsening is the base change of LiepG

pV aq “
À

αPX˚pT q LiepG
pV aq

α over rK.
For the root system Φ1 with the positive set Φ1` for the Borel B, ibid., 7.12 gives us a surjective map
η : X˚pT 1q� X˚pT q such that Φ` Ă ηpΦ1`q Ă Φ` Y t0u. By ibid., 1.12, we have a decomposition

U
ĂK
“
ś

αPΦ2 UĂK,α
, LiepU

ĂK
q “

À

αPΦ2 LiepG
ĂK
qα,

where Φ2 Ă Φ1` and we have isomorphisms fα : U
ĂK,α

„
ÐÝ G

a,ĂK
. Since LiepLq Ă LiepG

pV aq is the zero-
weight space for the T -action, the restriction to T of weights in LiepU

ĂK
q must be nonzero, that is

ηpΦ2q Ă Φ`. For a cocharacter ξ : Gm Ñ T , the dual map η˚ : X˚pT q ãÑ X˚pT
1q of η sends ξ to a

cocharacter η˚pξq P X˚pT 1q of T
ĂK
. The adjoint action of Gm on U induced by ξ is denoted by

ad: GmpKa
p

q ˆ UpKa
p

q Ñ UpKa
p

q, pt, uq ÞÑ ξptquξptq´1.
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For the open normal subgroup N Ă GpKa
p

q constructed in Proposition 3.19, the intersection N X UpKa
p

q

is open in UpKa
p

q, nonempty and stable under T pKa
p

q-action. We consider the commutative diagram

GmpKa
p

q ˆ pN X UpKa
p

qq T pKa
p

q ˆ pN X UpKa
p

qq N X UpKa
p

q

GmpKa
p

q ˆ UpKa
p

q T pKa
p

q ˆ UpKa
p

q UpKa
p

q

Gmp rKq ˆ Up rKq T p rKq ˆ Up rKq Up rKq.

ξ ˆ id ad

ξ ˆ id ad

ξ ˆ id ad

Let $ be a topologically nilpotent unit (A.6) of Ka
p

. For an integer m, the action of $m on u P UpKa
p

q is
denoted by p$mq ¨ u. Let ru be the image of u in Up rKq. Since ru “

ś

αPΦ2 fαpgαq with gα P rK, the image
of p$mq ¨ u in Up rKq is pη˚pξqp$mqq ru pη˚pξqp$mqq

´1, expressed as the following
ś

αPΦ2 pη
˚pξqp$mqq fαpgαq pη

˚pξqp$mqq
´1
“
ś

αPΦ2 fα
`

p$mqxη
˚
pξq,αygα

˘

“
ś

αPΦ2 fα
`

p$mqxξ,ηpαqygα
˘

.

Because ηpΦ2q Ă Φ`, we can choose a cocharacter ξ such that xξ, ηpαqy are strictly positive for all α P Φ2.
Then, when m increases, the element p$mq ¨ u P Up rKq a-adically converges to the identity, and so the
same holds in UpKa

p

q. Thus, since N X UpKa
p

q is an open neighborhood of identity, every orbit of the
T pKa
p

q-action on UpKa
p

q intersects with N X UpKa
p

q nontrivially. So, we have UpKa
p

q “
Ť

tPT pxKaq
tpN X

UpKa
p

qqt´1 “ N X UpKa
p

q, which implies that UpKa
p

q Ă N . By combining with Proposition 3.19, we get

UpKa
p

q Ă Im
`

GpV r 1
a sq

˘

. (4.5.4)

Step 3: we have P pKa
p

q Ă Im
`

GpV r 1
a sq

˘

¨GpV a
p

q. By Proposition 4.3 (e), the quotient H :“ L{T satisfies
HpKa
p

q “ HpV a
p

q. Since T is split, Hilbert’s theorem 90 gives the vanishing in the commutative diagram

0 T pV a
p

q LpV a
p

q HpV a
p

q H1pV a
p

, T q “ 0

0 T pKa
p

q LpKa
p

q HpKa
p

q H1pKa
p

, T q “ 0

(4.5.5)

with exact rows. A diagram chase yields LpKa
p

q “ T pKa
p

q ¨ LpV a
p

q. Combining this with (4.5.3) and
(4.5.4), by Corollary 3.20, we conclude that

P pKa
p

q Ă Im
`

GpV r 1
a sq

˘

¨GpV a
p

q. (4.5.6)

Step 4: the end of the proof. By [SGA 3III new, XXVI, 4.3.2, 5.2], there is a parabolic subgroup Q of G
such that P XQ “ L fitting into the surjection

radupP qpKa
p

q ¨ radupQqpKa
p

q� GpKa
p

q{P pKa
p

q. (4.5.7)

Applying (4.5.4) to (4.5.7) for U and radupQq gives GpKa
p

q Ă ImpGpV r 1
a sqq ¨P pK

a
p

q, which combined with
(4.5.6) yields GpKa

p

q Ă ImpGpV r 1
a sqq ¨GpV

a
p

q. With the equality ImpGpV r 1
a sqq ¨GpV

a
p

q “ ImpGpV r 1
a sqq ¨

GpV a
p

q verified in Corollary 3.20, the desired product formula GpKa
p

q “ ImpGpV r 1
a sqq ¨GpV

a
p

q follows. �

The following corollary of independent interest shows that torsors under reductive group schemes satisfy
arc-patching (see [BM21]), where the arc-cover of SpecV is of the form SpecV {p\ SpecVp.

Corollary 4.6. For a valuation ring V of rank n ě 1, the prime p Ă V of height n´ 1, and a reductive
V -group scheme G, the following map

ImpGpVpq Ñ Gpκppqqq ¨ ImpGpV {pq Ñ Gpκppqqq� GpVp{pq is surjective.
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Proof. By a limit argument ([SP, 01ZC], [BM21, 2.22]), we may assume that V contains an element a
cutting out the height-one prime ideal of V {p. Note that V r 1

a s “ Vp and the a-adic completion of V {p is
V a
p

. The affineness of G and Proposition A.10 (vii) V {p „
ÝÑ Vp{pˆFrac pV a V

a
p

give us the isomorphism

GpV {pq
„
ÝÑ GpVp{pq ˆGpFrac pV aq GpV

a
p

q.

By Proposition 4.5, the image of GpVpq ˆGpV {pq in GpFrac V a
p

q generates GpVp{pq. �

Proposition 4.7. For Theorem 1.3, proving that ♦ has trivial kernel for rank one Henselian V suffices.

Proof. A twisting technique [Gir71, III, 2.6.1(1)] reduces us to showing that the map ♦ has trivial kernel.
The valuation ring V is a filtered direct union of valuation subrings Vi of finite rank (see, for instance,
[BM21, 2.22]). Since direct limits commute with localizations, the fraction field K “ FracpV q is also a
filtered direct union of Ki :“ FracpViq. A limit argument [Gir71, VII, 2.1.6] gives compatible isomorphisms
H1

étpV,Gq – lim
ÝÑiPI

H1
étpVi, Gq and H1

étpK,Gq – lim
ÝÑiPI

H1
étpKi, Gq. Thus, it suffices to prove that ♦ has

trivial kernel for V of finite rank, say n ě 0. When n “ 0, the valuation ring V “ K is a field, so this case
is trivial. Our induction hypothesis is to assume that Theorem 1.3 holds for two kinds of valuation rings
V 1: (1) for V 1 Henselian of rank one; (2) for V 1 of rank n´ 1. Indeed, (1) is only used for the case n “ 1.

Let X be a G-torsor lying in the kernel of H1
étpV,Gq Ñ H1

étpK,Gq. For the prime p Ă V of height n´ 1,
we choose an element a P mV zp and consider the a-adic completion V a

p

of V with fraction field Ka
p

. The
induction hypothesis gives the triviality of X |V r 1

a s
hence a section s1 P X pV r 1

a sq. Consequently, X is
trivial over Ka

p

and by induction hypothesis again, trivial over V a
p

with s2 P X pV a
p

q. By the product
formula GpKa

p

q “ ImpGpV r 1
a sqq ¨GpV

a
p

q in Proposition 4.5, there are g1 P GpV r
1
a sq and g2 P GpV

a
p

q such
that g1s1 and g2s2 have the same image in X pKa

p

q. Since X is affine over V , by Proposition A.10 (vii),
we have X pV q » X pV r 1

a sq ˆX pxKaq
X pV a
p

q, which is nonempty, so the triviality of X follows. �

5. Passage to the semisimple anisotropic case

After the passage to the Henselian rank-one case Proposition 4.7, in this section, we further reduce
Theorem 1.3 to the case when G is semisimple anisotropic, see Proposition 5.1. For this, by induction on
Levi subgroups, we reduce to the case when G contains no proper parabolic subgroups. Subsequently,
we consider the semisimple quotient of G, which is semisimple anisotropic. By using the integrality of
rational points of anisotropic groups and a diagram chase, we obtain the desired reduction.

Proposition 5.1. To prove Theorem 1.3, it suffices to show that ♦ has trivial kernel in the case when
V is a Henselian valuation ring of rank one and G is semisimple anisotropic.

Proof. First, we reduce to the case when G contains no proper parabolics. If G contains a proper minimal
parabolic P with Levi L and unipotent radical radupP q, then we consider the commutative diagram

H1
étpV,Lq H1

étpV, P q H1
étpV,Gq

H1
étpK,Lq H1

étpK,P q H1
étpK,Gq.

lL lP lG

By [SGA 3III new, XXVI, 2.3], the left horizontal arrows are bijective. If a G-torsor X lies in kerplGq,
then it satisfies X pKq ‰ H. By ibid., 3.3; 3.20, the fpqc quotient X {P is representable by a scheme
which is projective over V . The valuative criterion of properness gives pX {P qpV q “ pX {P qpKq ‰ H, so
we can form a fiber product Y :“ X ˆX {P SpecV from a V -point of X {P . Since YpKq ‰ H, the class
rYs P kerplP q. On the other hand, the image of rYs in H1

étpV,Gq coincides with rX s. Consequently, the
triviality of kerplLq amounts to the triviality of kerplGq. By ibid., 1.20 and Proposition 4.7, we are reduced
to proving Theorem 1.3 where V is Henselian of rank one and G has no proper parabolic subgroup, more
precisely, to showing that kerpH1pV,Gq Ñ H1pK,Gqq “ t˚u for such V and G.
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For the radical radpGq of G, the quotient G{ radpGq is V -anisotropic, and by Proposition 4.3, satisfies
pG{ radpGqqpV q “ pG{ radpGqqpKq, fitting into the following commutative diagram with exact rows

pG{ radpGqqpV q H1
étpV, radpGqq H1

étpV,Gq H1
étpV,G{ radpGqq

pG{ radpGqqpKq H1
étpK, radpGqq H1

étpK,Gq H1
étpK,G{ radpGqq.

lpradpGqq lpGq lpG{ radpGqq

If kerplpG{ radpGqqq is trivial, then by the case of tori Proposition 2.7 and Four Lemma, we conclude. �

6. Proof of the main theorem

In this section, we finish the proof of our main result Theorem 1.3. By the reduction of Proposition 5.1, it
suffices to deal with semisimple anisotropic group schemes over Henselian valuation rings of rank one. In
this situation, we argue by using techniques in Bruhat–Tits theory and Galois cohomology to conclude.

Theorem 6.1. For a Henselian rank-one valuation ring V and a semisimple anisotropic V -group G,
kerpH1

étpV,Gq Ñ H1
étpFracV,Gqq “ t˚u.

Proof. Denote K :“ FracV and let rV be a strict Henselization of V at mV with fraction field rK as a
subfield of a separable closure Ksep. For the three Galois groups Γ :“ GalprV {V q, Γ

ĂK
:“ GalpKsep{ rKq

and ΓK :“ GalpKsep{Kq, since Γ – Galp rK{Kq, we have ΓK{Γ
ĂK
» Γ. An application of the Cartan–Leray

spectral sequence yields an isomorphism H1
étpV,Gq » H1pΓ, GprV qq. By [SGA 4II, VIII, 2.1], we have

H1
étpK,Gq » H1pΓK , GpKsepqq. With these bijections, the composite of the following maps α and β

H1pΓ, GprV qq α
Ñ H1pΓ, Gp rKqq β

Ñ H1pΓK , GpKsepqq

corresponds to the map H1
étpV,Gq Ñ H1

étpK,Gq. Hence it suffices to show that α and β have trivial kernels.
For β : H1pΓ, Gp rKqq Ñ H1pΓK , GpKsepqq, invoke the inflation-restriction exact sequence [Ser02, 5.8 a)]

0 Ñ H1pG1{G2, A
G2q Ñ H1pG1, Aq Ñ H1pG2, Aq

G1{G2 ,

for which G2 is a closed normal subgroup of a group G1 and A is a G1-group. It suffices to take
G1 :“ ΓK , G2 :“ Γ

ĂK
, and A :“ GpKsepq.

For α : H1pΓ, GprV qq Ñ H1pΓ, Gp rKqq, let z P H1pΓ, GprV qq be a cocycle in kerα, which signifies that

there is an h P Gp rKq such that for every s P Γ, zpsq “ h´1sphq P GprV q. (6.1.1)

Now we come to Bruhat–Tits theory and consider GprV q and hGprV qh´1 as two subgroups of Gp rKq.
Let ĂI pGq denote the building of G

ĂK
. Since G

ĂK
is semisimple, the extended building ĂI pGqext :“

ĂI pGq ˆ pHom
ĂK-gr.pG,Gm,ĂKq

_ bZ Rq has trivial vectorial part and equals to ĂI pGq. The elements of
Gp rKq act on the building ĂI pGq. For each facet F Ă ĂI pGq, we consider its stabilizer P :F and its connected
pointwise stabilizer P 0

F . In fact, there are group schemes G:F and G0
F over rV such that G:F prV q “ P :F and

G0
F p

rV q “ P 0
F , see [BTII, 4.6.28]. Note that the residue field of rV is separably closed and the closed fiber

of G
rV is reductive, so, by [BTII, 4.6.22, 4.6.31], there is a special point x in the building ĂI pGq such that

the Chevalley group G
rV is the stabilizer G:x “ G0

x of x with connected fibers. By definition [BTII, 5.2.6],
GprV q is a parahoric subgroup of Gp rKq. Therefore, its conjugate hGprV qh´1 is also a parahoric subgroup
P 0
h´1¨x. Since GprV q is Γ-invariant, every s P Γ acts on hGprV qh´1 as follows

sphGprV qh´1q “ sphqGprV qsph´1q
p6.1.1q
“““ hGprV qh´1.

The Γ-invariance of GprV q and hGprV qh´1 amounts to that x and h ¨ x are two fixed points of Γ in ĂI pGq.
But by [BTII, 5.2.7], the anisotropicity of GK gives the uniqueness of fixed points in ĂI pGq. Thus, we
have GprV q “ hGprV qh´1, which means that for every g P GprV q its conjugate hgh´1 fixes x. This is
equivalent to that g fixes h´1 ¨ x and to the inclusion of stabilizers P :x Ă P :

h´1¨x
. On the other hand,

every τ P P :
h´1¨x

satisfies hτh´1 ¨ x “ x, so hτh´1 P P :x “ GprV q. Since h normalizes GprV q, this inclusion
implies that τ P GprV q and P :

h´1¨x
Ă GprV q. Combined with P :x Ă P :

h´1¨x
, this gives P :x “ P :

h´1¨x
“ GprV q.
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Therefore, the stabilizer P :
h´1¨x

is also a parahoric subgroup and equals to P 0
h´1¨x. By [BTII, 4.6.29], the

equality P 0
x “ P 0

h´1¨x implies that h´1 ¨ x “ x, so h P P 0
x “ GprV q, which gives the triviality of z. �

7. Torsors over V pptqq and Nisnevich’s purity conjecture

In [Nis89, 1.3], Nisnevich proposed a conjecture that for a reductive group scheme G over a regular local
ring R with a regular parameter f P mRzm2

R, every Zariski-locally trivial G-torsor over Rr 1
f s is trivial:

H1
ZarpRr

1
f s, Gq “ t˚u.

Recently, Fedorov proved this conjecture when R is semilocal regular defined over an infinite field and
G is strongly locally isotropic (that is, each factor in the decomposition of Gad into Weil restrictions of
simple groups is Zariski-locally isotropic); he also showed that the isotropicity is necessary, see [Fed21].

In this section, we prove a variant of Nisnevich’s purity conjecture when R is a formal power series V JtK
over a valuation ring V , see Corollary 7.6. For this, we devise a cohomological property Proposition 7.5
of V pptqq by taking advantage of techniques of reflexive sheaves.

7.1. Coherentness and reflexive sheaves. A scheme with coherent structure sheaf is locally coherent;
a quasi-compact quasi-separated locally coherent scheme is coherent. For a valuation ring V with spectrum
S, by [GR18, 9.1.27], every essentially finitely presented affine S-scheme is coherent. For a locally coherent
scheme X and an OX -module F , we define the dual OX -module of F

F_ :“ HomOX pF ,OXq.

We say that F is reflexive, if it is coherent and the map F Ñ F__ is an isomorphism. A coherent
sheaf G has a presentation Zariski-locally O‘mX Ñ O‘nX Ñ G Ñ 0, whose dual is the exact sequence
0 Ñ G_ Ñ O‘nX Ñ O‘mX exhibiting G_ as the kernel of maps between coherent sheaves, hence by
[SP, 01BY] G_ is coherent, a priori finitely presented. If F is reflexive at a point x P X, then the dual of
a presentation O‘m

1

X,x Ñ O‘n
1

X,x Ñ F_
x Ñ 0 is a left exact sequence 0 Ñ Fx Ñ O‘n

1

X,x Ñ O‘m
1

X,x .

Lemma 7.2 (reflexive hull). Let X be an integral locally coherent scheme and let F be a coherent
OX-module, then F_ and F__ are reflexive OX-modules.

Proof. It suffices to show that F_ is reflexive. As F is coherent, choose a finite presentation O‘mX Ñ

O‘nX Ñ F Ñ 0, take its dual and its triple dual, we have the commutative diagram with exact rows

0 F_ O‘nX O‘mX

F___ O‘nX O‘mX .

u

u__

Our goal is to show that the left most vertical arrow is an isomorphism. Since the other vertical arrows
are isomorphisms, a diagram chase reduces us to showing that u__ is injective. Consider the dual of u

u_ : O‘nX Ñ F__

and its tensor product with the function field K of X, we get the following exact sequence
K‘n Ñ F__ bOX K Ñ cokerpu_qK Ñ 0.

As F is finitely presented, by [SP, 0583], we have F__bOXK » HomKpF_bOXK,Kq and we view K‘n

as HomKpK
‘n,Kq. Note that ubOXK : F_bOXK ãÑ K‘n is injective (since u is injective), we find that

cokerpu_qK “ 0, that is, cokerpu_q is a torsion OX -module. This implies that HomOX pcokerpu_q,OXq “
0, so we take dual of the exact sequence O‘nX

u_
Ñ F__ Ñ cokerpu_q Ñ 0 to get the injectivity of u__. �

Lemma 7.3 ([GR18, 11.4.1]). For a valuation ring V with spectrum S, a flat finitely presented morphism
of schemes f : X Ñ S, a coherent OX-sheaf F , a point x P X such that the fiber of f containing x is
regular, and the integer n :“ dim Of´1pfpxqq,x,

(i) if F is f -flat at x, then proj.dimOX,xFx ď n;

(ii) we have proj.dimOX,xFx ď n` 1; and
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(iii) if F is reflexive at x, then proj.dimOX,xFx ď maxp0, n´ 1q.

Proof.

(i) Since OX is coherent and Fx is finitely presented, there is free resolution of Fx by finite modules
¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ Fx Ñ 0.

It suffices to show that L :“ ImpPn Ñ Pn´1q is free. Now we have the following exact sequence
0 Ñ LÑ Pn´1 Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ Fx Ñ 0.

Denote y “ fpxq. Since Fx and kerpPi Ñ Pi´1q are f -flat for 1 ď i ď n´1, the following sequence
0 Ñ LbOX,x Of´1pyq,x Ñ ¨ ¨ ¨ Ñ P0 bOX,x Of´1pyq,x Ñ Fx bOX,x Of´1pyq,x Ñ 0

is exact. Denote y :“ fpxq. For the maximal ideal mx of Of´1pyq,x at x and the residue field kpxq
of x in OX,x, we note that LbOX,x

`

Of´1pyq,x{mxOf´1pyq,x

˘

“ LbOX,x kpxq. For a free basis pelqlPI
generating LbOX,x kpxq, by Nakayama’s lemma, there is a surjective map u :

À

lPI OX,xel � L.
Since f´1pyq is regular, by [SP, 00O9], the module LbOX,x Of´1pyq,x is free. Therefore, the map
pub 1qx : pp

À

lPI OX,xelq bOS kpyqqx Ñ pLbOS kpyqqx is an isomorphism. By [ÉGA IV4, 11.3.7],
u is injective. Consequently, the OX,x-module L is free and proj.dimOX,xFx ď n.

(ii) We prove the assertion Zariski-locally. There is a surjective map O‘mX Ñ F , whose kernel G is
a torsion-free coherent OX -module. Since V is a valuation ring, G is f -flat, so by (i) we have
proj.dimOXG ď n. Therefore, [SP, 00O5] implies that proj.dimOXF “ proj.dimOXG ` 1 ď n` 1.

(iii) By the analysis in §7.1, there is an exact sequence 0 Ñ Fx Ñ O‘kX,x
φ
Ñ O‘lX,x. By (ii), we have

proj.dimOX,xFx
[SP, 00O5]
“““ maxp0,proj.dimOX,xpcokerφq ´ 2q ď maxp0, n´ 1q. �

Since pV JtK, tq is a Henselian pair, by [Čes22a, 3.1.3(b)], reductive group schemes over V and V JtK are in
a one-to-one correspondence under extension-restriction operations. Hence, in the sequel, it suffices to
assume that reductive group schemes are defined over V . We bootstrap from the case when G “ GLn.

Lemma 7.4. For a valuation ring V , every vector bundle over V pptqq extends to a vector bundle over
V JtK. In particular, all GLn-torsors (or equivalently, all vector bundles) over V pptqq are trivial:

H1
étpV pptqq,GLnq “ t˚u.

Proof. The Henselization V ttu of V rts along tV rts is a filtered direct limit of étale ring extensions
Ri over V rts with isomorphisms V rts{tV rts „

ÝÑ Ri{tRi. By [BČ22, 2.1.22], a vector bundle E over
V pptqq descends to a vector bundle E 1 over V ttur 1t s. By a limit argument [Gir71, VII, 2.1.6], we have
H1

étpV ttur
1
t s,GLnq “ lim

ÝÑi
H1

étpRir
1
t s,GLnq so E 1 descends to a vector bundle Ei0 over Ri0r 1t s for an i0.

Due to [GR18, 10.3.24 (ii)], Ei0 extends to a finitely presented quasi-coherent sheaf Wi0 on Ri0 . Note that
Ri0 is coherent (7.1), by [SP, 01BZ], Wi0 is coherent. By Lemma 7.2, Hi0 :“ W __

i0
is reflexive. For the

morphism f : SpecRi0 Ñ SpecV , we exploit Lemma 7.3 (iii) to conclude that Hi0 is free. Consequently,
Ei0 extends to the vector bundle pHi0qV JtK over V JtK. Since Ei0 “ Hi0 |V pptqq is trivial, E is trivial. �

The anisotropic (indeed, the ‘wound’) case of the following Proposition 7.5 (c) was established in
[FG21, Cor. 4.2], where the authors considered formal power series over general rings.

Proposition 7.5. For a valuation ring V with fraction field K and a V -reductive group scheme G,

(a) the following natural map of pointed sets induced by base change is bijective:
H1

étpV JtK, Gq „
ÝÑ H1

étpV pptqq, Gq ˆH1
étpKpptqq,Gq

H1
étpKJtK, Gq;

(b) the map H1
étpV pptqq, Gq Ñ H1

étpKpptqq, Gq has trivial kernel; and

(c) the map H1
étpV JtK, Gq Ñ H1

étpV pptqq, Gq has trivial kernel.

Proof.
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(a) First, we show the surjectivity. If there are torsor classes α P H1
étpKJtK, Gq and β P H1

étpV pptqq, Gq
whose images in H1

étpKpptqq, Gq coincide, then we find a torsor class γ P H1
étpV JtK, Gq whose

restrictions are α and β. Recall the nonabelian cohomology exact sequence [Gir71, III, 3.2.2]
pGLn,V JtK {GqpRq Ñ H1

étpR,Gq Ñ H1
étpR,GLnq

such that the set of GLnpRq-orbits GLnpRqzpGLn,V JtK {GqpRq embeds into H1
étpR,Gq, where R can

be V pptqq, Kpptqq, or KJtK. Recall that by Lemma 7.4, we have H1
étpV pptqq,GLnq “ t˚u and note that

H1
étpKJtK,GLnq “ t˚u, so there are rα P pGLn,V JtK {GqpKJtKq and rβ P pGLn,V JtK {GqpV JtKq whose

images are α and β respectively and such that the images of rα and rβ in pGLn,V JtK {GqpKpptqqq are in
the same GLnpKpptqqq-orbit. By the valuative criterion for properness of the affine Graßmannian,

GLnpKpptqqq “ GLnpKJtKq ¨GLnpV pptqqq
holds, so up to group translations, we may assume that the images of rα and rβ in pGLn,V JtK {GqpKpptqqq
are identical. Because G is reductive, by [Alp14, 9.7.7], the quotient GLn,V JtK {G is affine over
V JtK. Thus, the fiber product V JtK „

ÝÑ V pptqq ˆKpptqq KJtK induces the following bijection of sets

pGLn,V JtK {GqpV JtKq „
ÝÑ pGLn,V JtK {GqpKJtKq ˆpGLn,V JtK {GqpKpptqqq pGLn,V JtK {GqpV pptqqq.

Consequently, there is a rγ P pGLn,V JtK {GqpV JtKq corresponding to prα, rβq. In particular, the image
γ P H1

étpV JtK, Gq of rγ is a desired torsor class that induces α and β, hence the surjectivity of (a).

It remains to show the injectivity. By [GR18, 5.8.14], we have bijections H1
étpV JtK, Gq » H1

étpV,Gq
and H1

étpKJtK, Gq » H1
étpK,Gq. Then the Grothendieck–Serre for valuation rings Theorem 1.3

implies that H1
étpV JtK, Gq Ñ H1

étpKJtK, Gq has trivial kernel. Therefore, the map of (a) is indeed
injective hence bijective.

(b) For a GV pptqq-torsor X trivializes over Kpptqq, we take a trivial GKJtK-torsor X 1 over KJtK with an
isomorphism ι : X|Kpptqq

„
ÝÑ X 1|Kpptqq. By (a), there is a GV JtK-torsor X restricts to X such that

XKJtK is trivial. By the main result Theorem 1.3 and [GR18, 5.8.14], the map H1
étpV JtK, Gq ãÑ

H1
étpKJtK, Gq is injective. Hence, the torsor X that restricts to X is trivial.

(c) By the Grothendieck–Serre over valuation rings (Theorem 1.3) and [GR18, 5.8.14], the map
H1

étpV JtK, Gq Ñ H1
étpKJtK, Gq

is injective. Since KJtK is a discrete valuation ring, the map H1
étpKJtK, Gq Ñ H1

étpKpptqq, Gq
is injective. The injective map H1

étpV JtK, Gq Ñ H1
étpKpptqq, Gq factors through H1

étpV JtK, Gq Ñ
H1

étpV pptqq, Gq, hence the later is injective. �

Now we prove a variant of the Nisnevich’s purity conjecture for formal power series over valuation rings.

Corollary 7.6. For a reductive group scheme G over a valuation ring V , every Zariski-locally trivial
G-torsor over V pptqq is trivial, that is, we have

H1
ZarpV pptqq, Gq “ t˚u.

Proof. A Zariski G-torsor over V pptqq is an étale G-torsor over V pptqq trivializing over Kpptqq. Hence the
assertion follows from Proposition 7.5 (b). �
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Appendix A. Valuation rings and valued fields

The purpose of this appendix is to list the common properties of valuation rings and valued fields,
especially those used in this article, and to be as concise and brief as possible. We therefore try to cite
the literature just for endorsement, even though some of the arguments can be carried out directly.

A.1. Valuation rings. For a field K, a subring V Ă K such that every x P K satisfies that x P V or
x´1 P V or both is a valuation ring of K ([SP, 052K, 00IB]). For the groups of units Kˆ and V ˆ, the
quotient Γ :“ Kˆ{V ˆ is an abelian group with respect to the multiplications in Kˆ. The quotient map
ν : Kˆ Ñ Γ induces a map V zt0u Ă Kˆ Ñ Γ, also denoted by ν. This map ν is the valuation associated
to V . Even though the rank of Γ (and, of V ) is the “order type” of the collection of convex subgroups
([EP05, p. 26, 29]), in practice, one may identify the rank of V as its Krull dimension when it is finite
([EP05, Lem. 2.3.1]). The abelian group Γ has an order ě: for γ, γ1 P Γ, we declare that γ ě γ1 if and only
if γ ´ γ1 is in the image of ν : V zt0u Ñ Γ. By [SP, 00ID], pΓ,ěq is a totally ordered abelian group, called
the value group of V . If Γ » Z, then ν is a discrete valuation. Conversely, given a totally ordered abelian
group pΓ,ě,`q, if there is a surjection ν : Kˆ � Γ such that for all x, y P K, we have νpxyq “ νpxq`νpyq
and νpx` yq ě mintνpxq, νpyqu, then ν extends to a map K � ΓY t8u by declaring that νpxq “ 8 if
and only if x “ 0, where 8 is a symbol whose sum with any element is still 8; such ν is also a valuation
on K ([EP05, p. 28]). If a field K is equipped with a valuation ν, then the pair pK, νq is called a valued
field. Every valuation ν on K gives rise to a valuation ring V pνq Ă K as the following

V pνq :“ tx P K | νpxq ě 0u,

and every valuation ring of K comes from a valuation ([EP05, Prop. 2.1.2]). There may exist different
valuations ν and ν1 on a field K, yielding different valuation rings of K. Two valuations ν and ν1 on K
are equivalent, if they define the same valuation rings V pνq “ V pν1q. By [EP05, Prop. 2.1.3], ν and ν1 are
equivalent if and only if there is an isomorphism of ordered groups ι : Γν „

ÝÑ Γν1 such that ι ˝ ν “ ν1.

Proposition A.2. Let V be a valuation ring of a field K with value group Γ and p Ă V a prime ideal.

(i) V is a normal local domain and every finitely generated ideal of V is principal;

(ii) for the localization Vp of V at p, we have p “ pVp;

(iii) Vp is a valuation ring for K and V {p is a valuation ring for the residue field κppq “ Vp{p;

(iv) we have an isomorphism V
„
ÝÑ V {pˆVp{p Vp and thus SpecV “ SpecV {p\SpecpVp{pq SpecVp;

(v) for the value groups ΓVp
and ΓV {p of Vp and of V {p respectively, we have isomorphisms

ΓV {p » pVpqˆ{V ˆ and ΓV {ΓV {p » ΓVp
,

corresponding to the short exact sequence 1 Ñ pVpq
ˆ{V ˆ Ñ Kˆ{V ˆ Ñ Kˆ{pVpq

ˆ Ñ 1;

(vi) the Henselization and the strict Henselization of V are valuation rings with value groups Γ;

(vii) if V is Henselian, then Vp and V {p are Henselian valuation rings.

Proof. For (i), see [FK18, Ch. 0, 6.2.2]. To show (ii), we write every element in pVp as a{b, where a P pV
and b P V zp. If a{b P V then a{b P p. Since V is a valuation ring, it remains the case when b{a P V . Then
b P pV , which leads to a contradiction. For (iii), see [FK18, Ch. 0, Prop. 6.4.1]. For (iv), we note that V “
tx P Vp|px mod pVpq P V {pu ([FK18, Ch. 0, Prop. 6.4.1]). The spectral aspect follows from [SP, 0B7J].
For (v), we first deduce from the fiber product V » V {pˆVp{p Vp that ΓV {p “ κppqˆ{pV {pqˆ » pVpq

ˆ{V ˆ

then substitute this into the short exact sequence 1 Ñ FracpV {pqˆ{pV {pqˆ Ñ Kˆ{V ˆ Ñ Kˆ{pVpq
ˆ Ñ 1.

For (vi), see [SP, 0ASK]. For (vii), note that Vp and V {p are valuation rings due to (iii). By [SP, 05WQ],
V {p is Henselian. For Vp, we use Gabber’s criterion [SP, 09XI] to check that every monic polynomial

fpT q “ TN pT ´ 1q ` aNTN ` ¨ ¨ ¨ ` a1T ` a0, where ai P pVp for i “ 0, ¨ ¨ ¨ , N and N ě 1

has a root in 1 ` pVp. Note that this criterion only involves pVp. Here, by (ii), pVp is equal to p. By
[SP, 0DYD], the Henselianity of V implies that pV, pq is a Henselian pair, thereby we conclude. �
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A.3. Valuation topologies. Given a field K with a valuation ν : K � Γ Y t8u, for each γ P Γ and
each x P K, we define the open ball Uγpxq Ă K with center x and radius γ, as the following subset

Uγpxq :“ ty P K | νpy ´ xq ą γu.

All open balls pUγpxqqγPΓ form an open neighborhood base of x and generates a topology on K, the
valuation topology determined by ν. Under this topology, the valued field pK, νq has a unique (up to
isomorphisms) field extension p pK, pνq that is complete in which K is dense ([EP05, Thm. 2.4.3]), that is,
the completion of pK, νq with respect to the valuation topology. Similarly, the valuation ring pV of p pK, pνq
is the valuative completion of V . The inequality νpx` yq ě mintνpxq, νpyqu leads to various topological
properties, some of which are counter-intuitive. In the sequel, we let Bγpxq :“ tz P K | νpz ´ xq ě γu and
Sγpxq :“ tz P K | νpz ´ xq “ γu be the closed ball and the sphere with center x and radius γ respectively.

Proposition A.4. For a valued field pK, νq with the valuation topology and elements x P K and γ P Γ,

(i) for y, z P K, the smallest and second smallest among νpx´ yq, νpy ´ zq, and νpz ´ xq are equal;

(ii) every point of the closed ball Bγpxq is a center: for all y P Bγpxq, we have Bγpyq “ Bγpxq;

(iii) every closed ball is open and every open ball is closed;

(iv) any pair of balls in K are either disjoint or nested;

(v) the sphere Sγpxq is both closed and open, hence it is not the boundary BBγpxq of Bγpxq.

In particular, the valuation topology on pK, νq is Hausdorff and the valuation ring V pνq Ă K is clopen.

Proof. If (i) holds, then for any a ‰ b in K and δ :“ νpa´ bq, we have U2δpaq X U2δpbq ‰ H, hence K is
Hausdorff. The assertion (i) follows from the inequality νpc`dq ě mintνpcq, νpdqu for all c, d P K, and the
other assertions follow from (i), see the arguments in [EP05, p. 45 and Rem. 2.3.3] and [PGS10, p. 3]. �

A.5. Absolute values. Let K be a field. An absolute value on K is a function | ¨ | : K Ñ Rě0 such that
(1) |x| “ 0 if and only if x “ 0; (2) |xy| “ |x| ¨ |y|; and (3) |x` y| ď |x|` |y| (triangle inequality). We say
that | ¨ | is archimedean, if |N| Ă Rě0 is unbounded; | ¨ | is nonarchimedean, if |N| Ă Rě0 is bounded.
These notions originate from the ‘Archimedean property’: for arbitrary positive real numbers x and y,
there is n P N such that xn ą y. In fact, an absolute value | ¨ | is nonarchimedean if and only if it satisfies
the strong triangle inequality |x` y| ď maxt|x| , |y|u: one takes M such that |N| ăM and notes that

|x` y|n ď
řn
k“0

∣∣`n
k

˘∣∣ ¨ |x|k |y|n´k ď pn` 1qM ¨maxt|x| , |y|un,
whose n-th root when nÑ `8 yields |x` y| ď maxt|x| , |y|u. In particular, by checking the axioms of
valuations (A.1), an absolute value | ¨ | : K Ñ Rě0 is nonarchimedean if and only if there is a valuation
ν : K Ñ ΓY t8u of rank one (a value group is of rank one if and only if it is embeddable into R as a
totally ordered abelian subgroup, so Γ Ă R) such that e´νp¨q “ | ¨ |.

A.6. Huber rings and Tate rings. Let R be a topological ring. We say that

- R is adic, if it has an ideal I Ă R such that tInu`8n“1 form a basis of open neighborhoods of 0 P R;

- R is Huber, if it has an open subring R0 with a finitely generated ideal I Ă R0 making R0 adic;

- R is Tate, if it is Huber and has a topologically nilpotent unit $ P Rzt0u, that is, limnÑ`8$
n “ 0.

Now, we present a relation (cf. [Hub96, I, Def. 1.1.4]) between valuation topologies and the notions above.

Proposition A.7. Let pK, νq be a valued field with valuation ring V . The following are equivalent:

(i) V has a prime ideal of height one;

(ii) the valuation topology on K is induced by a valuation of rank one;

(iii) K is a Tate ring under its valuation topology;

(iv) K has a topologically nilpotent unit for the valuation topology.
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In particular, there exist nonzero topologically nilpotent elements $ P V , and every such $ satisfies that
a

p$q is the prime ideal of height one in V .

Proof. Before proving the equivalences, first note that the set of all ideals of V ordered by inclusion is
totally ordered. For two ideals I, J Ă V , if there is an element j P J such that j R I, then ji´1 R V for
all i P Izt0u. By the definition of valuation rings, ij´1 P V for all i P I. This implies that I Ă pjq Ă J .

(i)ñ(iv). For the prime p Ă V of height one, we claim that any $ P pzt0u is topologically nilpotent. For
any γ P Γ, it suffices to find an n P Z` such that $n P Uγ “ tx P K | νpxq ą γu. Since ν : K � Γ is
surjective, we show that for any a

b P K where a, b P V zt0u, there is n P Z` such that νp$nq ą νpaq´ νpbq,
in particular, such that νp$nq ą νpaq suffices. If νpaq ě νp$nq holds for all n, then a{$n P V holds for
all n, that is, a P

Ş

np$
nq. But

Ş

np$
nq “ 0 ([FK18, Ch. 0, Prop. 6.7.2]), so a “ 0, a contradiction.

(i)ñ(iii). As above, there is a topologically nilpotent unit $ P V of K. Take V as an open subring of K,
it suffices to show that tp$nqu

`8
n“1 form a basis of open neighborhoods of 0 P V . We have known that

every Uγ contains some p$nq. Conversely, for a fixed n P Z`, there is γ P Γ such that Uγ Ă p$nq. To see
this, we need to find γ P Γ such that the condition νpxq ą γ implies that νpxq ą νp$nq. It suffices to let
γ ą νp$nq “ nνp$q, say, γ “ pn` 1qνp$q.

(iii)ñ(iv). By definition of Tate rings, it is obvious.

(i)ñ(ii). The argument for (i)ñ(iii) implies that tp$nqun form a basis of open neighborhoods of 0 P V .
As $ lies in the height-one prime ideal, the valuation topology on K is induced by its rank-one valuation.

(ii)ñ(i). The rank-one valuation corresponds to the height-one prime ideal of V , since all nonequivalent
valuations of K are in one-to-one correspondence with the prime ideals of V ([FK18, Ch. 0, Prop. 6.2.9]).

(iv)ñ(i). For a topologically nilpotent unit $ P K, we prove that p :“
a

p$q is the prime ideal of height
one. If a, b P V such that ab P p and b R p, then there are an integer n ą 0 and c P V such that anbn “ $c,
and ${bm P V holds for every integer m ą 0. It follows that a2n “ $p${b2nqc2 P p$q, so a P p and we see
that p is a prime. To see that p is of height one, note that the set of ideals of V is totally ordered under
inclusion and $n tends to zero, every nonzero prime ideal q between p0q and p satisfies p$N q Ă q Ă p for
some N . Taking radicals of these inclusions, we find that q “ p, thus p is of height one. �

A.8. Nonarchimedean fields. A nonarchimedean field is a topological field K whose topology is
induced by a nontrivial valuation of rank one on K.3 By the end of A.5, a topological field K is
nonarchimedean if and only if its topology is induced by a nonarchimedean absolute value on K. If
an absolute value on K is not nonarchimedean, then it is archimedean. We note that the existence of
absolute values on the topological field K is a prerequisite for our discussion of Archimedean properties.

A.9. a-adic topologies. For a valuation ring V and an element a P mV zt0u, the a-adic topologies on V
and on V r 1

a s are determined by the respective fundamental systems of open neighborhoods of 0:

tanV uně0 and tImpanV Ñ V r 1
a squně0.

Note that the a-adic topology on V r 1
a s is not defined by ideals, since such topology is only V -linear

([GR18, Def. 8.3.8(iii)]). Then, the a-adic completions V a
p

and V r 1
a s
a

p are the following inverse limits:

V a
p

:“ lim
ÐÝną0 V {a

n and V r 1
a s
a

p :“ lim
ÐÝną0pV r

1
a s{ImpanV Ñ V r 1

a sqq.

Proposition A.10. For a valuation ring V and a nonzero element a P mV ,

(i)
a

paq is the minimal one among all the prime ideals containing paq, while
Ş

ną0pa
nq is the maximal

one among all the prime ideals contained in paq;

(ii) the a-adic completion V Ñ V a
p

factors through the a-adically separated quotient V {
Ş

ną0pa
nq;

(iii) the rings V r 1
a s and V a

p

are valuation rings, and we have V r 1
a s
a

p “ V a
p

r 1
a s;

3Some authors additionally require the completeness of K, for instance, Scholze [Sch12, Def. 2.1].
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(iv) if V has finite rank n ě 1 and paq is between the primes of heights r ´ 1 and r for 1 ď r ď n,
then rankpV a

p

q “ n´ r ` 1 and rankpV r 1
a sq “ r ´ 1;

(v) we have V a
p

r 1
a s “ Frac V a

p

, which is also the a-adic completion of the residue field of V r 1
a s;

(vi) the valuative completion pV , the a-adic completion V a
p

, and V share the same residue field;

(vii) we have an isomorphism to a fiber product of rings V „
ÝÑ V r 1

a s ˆxKa V
a
p

, where Ka
p

is the a-adic
completion of K “ FracV .

Proof. For (i), see [FK18, Ch. 0, Prop. 6.2.3 and 6.7.1]. For (ii), see the end of [FK18, Ch. 0, Cor. 9.1.5].
For (iii), by [FK18, Ch. 0, Cor. 9.1.5], V a

p

is a valuation ring. Let α
β P K :“ FracV be an element which

is not in V r 1
a s. Hence, an

α
β R V for every n ą 0, which means that β

α P pa
nq for every n ą 0. So β

α lies in
Ş

ną0pa
nq, the maximal ideal of V r 1

a s by (i). The relation V a
p

r 1
a s “ V r

1
a s
a

p is due to [BČ22, Ex. 2.1.10 (2)]
and the fact that V is a-torsion-free. For (iv), by (i), the rank of V r 1

a s is r ´ 1; also, q :“
Ş

ną0pa
nq

is the prime ideal of height r ´ 1. Note that V a
p

is the a-adic completion of the a-adically separated
quotient V {q, whose rank is n´ r ` 1. By [FK18, Ch. 0, Thm. 9.1.1 (5)], we conclude that V a

p

is also
of rank n´ r ` 1. For (v), by [FK18, Ch. 0, Prop. 6.7.2], V a

p

r 1
a s is the fraction field of V a

p

. By (i), the
residue field κ of V r 1

a s is V r
1
a s{

Ş

ną0 a
nV , hence the a-adic completion of κ is V r 1

a s
a

p , which is V a
p

r 1
a s

by (iii). For (vi), see [EP05, Prop. 2.4.4], (ii) and [FK18, Ch. 0, Thm. 9.1.1 (2)]. For (vii), we apply
[SP, 0BNR] to the a-adic completion V Ñ V a

p

: note that V {anV » V a
p

{anV a
p

for every positive integer
n ([FK18, Ch. 0, 7.2.8]), also, V ra8s “ kerpV Ñ V r 1

a sq “ 0 and V a
p

ra8s “ kerpV a
p

Ñ V a
p

r 1
a sq “ 0; the

exactness of 0 Ñ V Ñ V r 1
a s‘ V

a
p

Ñ V a
p

r 1
a s Ñ 0 implies the desired isomorphism V

„
ÝÑ V r 1

a sˆxKa V
a
p

. �

A.11. Comparison of topologies. We have compared different valuation topologies to some extent
(Proposition A.7). Now, consider three kinds of topologies on a valuation ring V : the a-adic topology, the
valuation topology, and the mV -adic topology, where mV Ă V is the maximal ideal. First, the mV -adic
topology is usually non-Hausdorff and does not coincide with any a-adic topology: for the rank-one
valuative completion Cp of the algebraic closure Qp of Qp, the maximal ideal m of the valuation ring
OCp of Cp satisfies m “ m2. Thus, for every nonzero a P m and every n ą 0, we have paq Č mn “ m.
Secondly, for a, b P mV zt0u, the comparison of a-adic and b-adic topologies is [FK18, Ch. 0, Prop. 7.2.1]:

the a-adic and b-adic topologies coincide ô
a

paq “
a

pbq,

and in such case, the a-adic completion is equal to the b-adic completion; also, the Henselizations of pairs
pV, aq and pV, bq coincide ([SP, 0F0L]). Thirdly, to compare a-adic topologies and valuation topologies,
by Proposition A.7, V has a prime ideal of height one p if and only if there is a topologically nilpotent
$ P V zt0u such that the valuation topology on V is $-adic and

a

p$q “ p. In conclusion,

the valuation topology is nonarchimedean ô it is a-adic for an a P mV such that
a

paq is height-one.

Of course, valuation topologies and a-adic topologies do not coincide in general since each kind of both
has aforementioned internal differences. Lastly, a valuation ring V equipped with an a-adic topology for
some a P mV zt0u may not have any prime ideal of height one, so its valuation topology can not be a-adic.

Corollary A.12. For a valuation ring V , an element a P mV zt0u, and the a-adic completion V a
p

of V ,
the fraction field Ka

p

:“ Frac V a
p

is a nonarchimedean field with respect to the a-adic topology.

Proof. Let Γ be the value group of Ka
p

. If there is a γ P Γ such that νpanq ď γ for all n P Z`, then there
is a b P V a

p

such that νpbq “ γ and b P
Ş

npa
nq. Since V a

p

is a-adically separated, we have
Ş

npa
nq “ 0 so

b “ 0, that is, γ “ 8 R Γ. Thus every Uγ contains some an, that is, a is topologically nilpotent for the
valuation topology, hence Ka

p

is a Tate ring with its open subring V a
p

. By Proposition A.7,
a

paq is of
height one in V a

p

, the valuation topology on Ka
p

is a-adic hence nonarchimedean by A.11. �

We end this appendix by a comparison of Henselianity and completeness of valuation rings.
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Proposition A.13. For a valuation ring V equipped with an a-adic topology for an element a P mV zt0u.
If V is a-adically complete, then the pair pV, aq is Henselian. If V has finite rank n and a is not in the
unique prime p Ă V that is of height n´ 1, then the a-adic completion V a

p

is a Henselian local ring.

Proof. If V is a-adically complete, then the Henselianity of pV, aq follows from [FK18, Ch. 0, Prop. 7.3.5 (1)].
Now we show the second part. By Proposition A.10 (iv), V a

p

is of rank one. Since pV a
p

, aV a
p

q is a Henselian
pair and Proposition A.10 (i) implies that

a

paq “ mV , by [SP, 0F0L], the local ring V a
p

is Henselian. �

References

[ÉGA I] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. I. Le langage des schémas,
Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228. MR0217083 (36 #177a)

[ÉGA IV2] Alexander Grothendieck and Jean Dieudonné, Éléments de géométrie algébrique. IV. Étude locale
des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965),
231 (French). MR0199181 (33 #7330)

[ÉGA IV4] Alexander Grothendieck and Jean Alexandre Eugène Dieudonné, Éléments de géométrie algébrique.
IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ.
Math. 32 (1967), 361 (French). MR0238860 (39 #220)

[SGA 1new] Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathe-
matical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003 (French). Séminaire
de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie
1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated
reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)].
MR2017446 (2004g:14017)

[SGA 3II] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux,
Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et
A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970
(French). MR0274459 (43 #223b)

[SGA 3III new] Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome III. Structure des
schémas en groupes réductifs, Documents Mathématiques (Paris) [Mathematical Documents (Paris)],
8, Société Mathématique de France, Paris, 2011 (French). Séminaire de Géométrie Algébrique du
Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by
M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M.
Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR2867622

[SGA 4II] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol.
270, Springer-Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie
1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration
de N. Bourbaki, P. Deligne et B. Saint-Donat. MR0354653 (50 #7131)

[Abh56] Shreeram Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic
p ‰ 0, Ann. of Math. (2) 63 (1956), 491–526, DOI 10.2307/1970014.

[Abh66] Shreeram Shankar Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and
Applied Mathematics, Vol. 24, Academic Press, New York-London, 1966.

[Alp14] Jarod Alper, Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom. 1
(2014), no. 4, 489–531, DOI 10.14231/AG-2014-022.

[Bar67] Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350–355, DOI
10.1007/BF01109800.

[BM21] Bhargav Bhatt and Akhil Mathew, The arc-topology, Duke Math. J. 170 (2021), no. 9, 1899–1988,
DOI 10.1215/00127094-2020-0088 (English).

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21,
Springer-Verlag, Berlin, 1990.

[BouAC] Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-
Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.

[BČ22] Alexis Bouthier and Kęstutis Česnavičius, Torsors on loop groups and the Hitchin fibration, Annales
scientifiques de l’École normale supérieure 55 (2022), no. 3, 791–864, DOI 10.24033/asens.2506.

[BTII] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence
d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376.

[Čes15] Kęstutis Česnavičius, Topology on cohomology of local fields, Forum Math. Sigma 3 (2015), e16, 55,
DOI 10.1017/fms.2015.18. MR3482265

[Čes22a] , Grothendieck–Serre in the quasi-split unramified case, Forum Math. Pi 10 (2022), 30, DOI
10.1017/fmp.2022.5 (English). Id/No e9.

29

https://stacks.math.columbia.edu/tag/0F0L


[Čes22b] , Problems about torsors over regular rings, Acta Math. Vietnam. 47 (2022), no. 1, 39–107,
DOI 10.1007/s40306-022-00477-y (English).

[CLRR80] M. D. Choi, T. Y. Lam, B. Reznick, and A. Rosenberg, Sums of squares in some integral domains,
J. Algebra 65 (1980), no. 1, 234–256, DOI 10.1016/0021-8693(80)90248-3.

[CTS78] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, Cohomologie des groupes de type multiplicatif
sur les schémas réguliers, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 6, A449–A452.

[CTS87] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, Principal homogeneous spaces under flasque
tori: applications, J. Algebra 106 (1987), no. 1, 148–205, DOI 10.1016/0021-8693(87)90026-3.
MR878473

[Con12] Brian Conrad, Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012),
no. 1-2, 61–97, DOI 10.4171/LEM/58-1-3.

[Con14] , Reductive group schemes, Autour des schémas en groupes. Vol. I, 2014, pp. 93–444.
[CP08] Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds in positive characteristic.

I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra
320 (2008), no. 3, 1051–1082, DOI 10.1016/j.jalgebra.2008.03.032.

[CP09] , Resolution of singularities of threefolds in positive characteristic. II, J. Algebra 321 (2009),
no. 7, 1836–1976, DOI 10.1016/j.jalgebra.2008.11.030.

[Cut09] Steven Dale Cutkosky, Resolution of singularities for 3-folds in positive characteristic, Amer. J.
Math. 131 (2009), no. 1, 59–127, DOI 10.1353/ajm.0.0036.

[EP05] Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2005.

[Fed22] Roman Fedorov, On the Grothendieck-Serre conjecture on principal bundles in mixed characteristic,
Trans. Am. Math. Soc. 375 (2022), no. 1, 559–586, DOI 10.1090/tran/8490 (English).

[Fed21] , On the purity conjecture of Nisnevich for torsors under reductive group schemes, 2021.
preprint, available at https://arxiv.org/pdf/2109.10332.pdf.

[FP15] Roman Fedorov and Ivan Panin, A proof of the Grothendieck–Serre conjecture on principal bundles
over regular local rings containing infinite fields, Publ. Math. Inst. Hautes Études Sci. 122 (2015),
169–193, DOI 10.1007/s10240-015-0075-z. MR3415067

[FG21] Mathieu Florence and Philippe Gille, Residues on affine Grassmannians, J. Reine Angew. Math.
776 (2021), 119–150, DOI 10.1515/crelle-2021-0007.

[FK18] Kazuhiro Fujiwara and Fumiharu Kato, Foundations of rigid geometry. I, EMS Monographs in
Mathematics, European Mathematical Society (EMS), Zürich, 2018.

[Gab81] Ofer Gabber, Some theorems on Azumaya algebras, The Brauer group (Sem., Les Plans-sur-Bex,
1980), 1981, pp. 129–209.

[GR18] Ofer Gabber and Lorenzo Ramero, Foundations for almost ring theory, 2018. preprint, available at
https://arxiv.org/abs/math/0409584v13.

[GGMB14] Ofer Gabber, Philippe Gille, and Laurent Moret-Bailly, Fibrés principaux sur les corps valués
henséliens, Algebr. Geom. 1 (2014), no. 5, 573–612 (French, with English and French summaries).
MR3296806

[Gir71] Jean Giraud, Cohomologie non abélienne (1971), ix+467. Die Grundlehren der Mathematischen
Wissenschaften, Band 179.

[Gro58] Alexander Grothendieck, Torsion homologique et sections rationnelles, Anneaux de Chow et
applications. Séminaire Claude Chevalley (2e année) Tome 3, 1958, pp. Exp. no.5, 1–29 (French).

[Gro68] , Le groupe de Brauer. II: Théorie cohomologique, Dix Exposés Cohomologie Schémas,
(North-Holland, Amsterdam; Masson, Paris), 1968, pp. 67–87 (French).

[GL23] N. Guo and F. Liu, Grothendieck–Serre for constant reductive group schemes, preprint (2023).
Available at http://arxiv.org/abs/2301.12460.

[GP23] N. Guo and I. Panin, On the Grothendieck–Serre conjecture for projective smooth schemes over a
DVR, preprint (2023). Available at http://arxiv.org/abs/2302.02842.

[Har68] Günter Harder, Eine Bemerkung zum schwachen Approximationssatz, Arch. Math. (Basel) 19
(1968), 465–471.

[Hub96] Roland Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics,
E30, Friedr. Vieweg & Sohn, Braunschweig, 1996.

[Mac17] Marco Maculan, Maximality of hyperspecial compact subgroups avoiding Bruhat–Tits theory, Ann.
Inst. Fourier (Grenoble) 67 (2017), no. 1, 1–21.

[Mil80] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University
Press, Princeton, N.J., 1980.

[MB01] Laurent Moret-Bailly, Problèmes de Skolem sur les champs algébriques, Compositio Math. 125
(2001), no. 1, 1–30, DOI 10.1023/A:1002686625404.

[Nag66] Masayoshi Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. 5 (1966),
163–169, DOI 10.1215/kjm/1250524533.

30

https://arxiv.org/pdf/2109.10332.pdf
http://arxiv.org/abs/2301.12460
http://arxiv.org/abs/2302.02842


[Nis89] Yevsey A. Nisnevich, Rationally trivial principal homogeneous spaces, purity and arithmetic of
reductive group schemes over extensions of two-dimensional regular local rings, C. R. Acad. Sci.
Paris Sér. I Math. 309 (1989), no. 10, 651–655 (English, with French summary). MR1054270

[Pan20] I. A. Panin, Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings
containing a field, Izv. Ross. Akad. Nauk Ser. Mat. 84 (2020), no. 4, 169–186, DOI 10.4213/im8982.

[PS23a] I. Panin and A. Stavrova, On the Gille theorem for the relative projective line: I, preprint (2023).
Available at http://arxiv.org/abs/2304.09465.

[PS23b] , On the Gille theorem for the relative projective line: II, preprint (2023). Available at
http://arxiv.org/abs/2305.16627.

[PGS10] C. Perez-Garcia and W. H. Schikhof, Locally convex spaces over non-Archimedean valued fields,
Cambridge Studies in Advanced Mathematics, vol. 119, Cambridge University Press, Cambridge,
2010.

[Pra82] Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits,
Bull. Soc. Math. France 110 (1982), no. 2, 197–202.

[Qui76] Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171, DOI
10.1007/BF01390008.

[Rou77] Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, U.E.R. Mathématique,
Université Paris XI, Orsay, 1977. Thèse de doctorat, Publications Mathématiques d’Orsay, No.
221-77.68.

[Sch12] Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313, DOI
10.1007/s10240-012-0042-x.

[Ser58] Jean-Pierre Serre, Espaces fibrés algébriques, Anneaux de Chow et applications. Séminaire Claude
Chevalley (2e année) Tome 3, 1958, pp. Exp. no.1, 1–37 (French).

[Ser02] , Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in
Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised
by the author. MR1867431 (2002i:12004)

[SP] The Stacks Project Authors, Stacks Project, 2018.
[Tem13] Michael Temkin, Inseparable local uniformization, J. Algebra 373 (2013), 65–119, DOI

10.1016/j.jalgebra.2012.09.023.
[Tem17] , Tame distillation and desingularization by p-alterations, Ann. of Math. (2) 186 (2017),

no. 1, 97–126, DOI 10.4007/annals.2017.186.1.3.
[Zar40] Oscar Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852–896,

DOI 10.2307/1968864.

31

http://arxiv.org/abs/2304.09465
http://arxiv.org/abs/2305.16627

	1. The Grothendieck–Serre conjecture and Zariski's local uniformization
	Acknowledgements

	2. The case of tori
	3. Algebraizations and a Harder-type approximation
	4. Passage to the Henselian rank one case: patching by a product formula
	5. Passage to the semisimple anisotropic case
	6. Proof of the main theorem
	7. Torsors over V((t)) and Nisnevich's purity conjecture
	Appendix A. Valuation rings and valued fields
	References

