THE GROTHENDIECK-SERRE CONJECTURE OVER VALUATION RINGS

NING GUO

ABSTRACT. In this article, we establish the Grothendieck—Serre conjecture over valuation rings:
for a reductive group scheme G over a valuation ring V with fraction field K, a G-torsor over
V' is trivial if it is trivial over K. This result is predicted by the original Grothendieck—Serre
conjecture and the resolution of singularities. The novelty of our proof lies in overcoming
subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and
inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélene—
Sansuc’s case of tori. Then, taking advantage of techniques in algebraization, we obtain the
passage to the Henselian rank one case. Finally, we induct on Levi subgroups and use the
integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case,
in which we appeal to properties of parahoric subgroups in Bruhat—Tits theory to conclude. In
the last section, by using extension properties of reflexive sheaves on formal power series over
valuation rings and patching of torsors, we prove a variant of Nisnevich’s purity conjecture.
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1. THE GROTHENDIECK—SERRE CONJECTURE AND ZARISKI’S LOCAL UNIFORMIZATION

Originally conceived by J.-P. Serre [Ser58, p. 31, Rem.] and A. Grothendieck [Gro58, pp. 26-27, Rem. 3]
in 1958, the prototype of the Grothendieck—Serre conjecture predicted that for an algebraic group G
over an algebraically closed field k, a G-torsor over a nonsingular k-variety is Zariski-locally trivial if it
is generically trivial. With its subsequent generalization to regular base schemes by A. Grothendieck
[Gro68, Rem. 1.11.a] and the localization by spreading out, the conjecture became the following.
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Conjecture 1.1 (Grothendieck—Serre). For a reductive group scheme G over a regular local ring R with
fraction field K, the following map between nonabelian étale cohomology pointed sets has trivial kernel:

Hét(R7 G) - Hét(Ka G)§

in other words, a G-torsor over R is trivial if its restriction over K is trivial.

Diverse variants and cases of Conjecture 1.1 were derived in the last decades. A nice survey of the topic
is [Ces22b]. For state-of-the-art results, a more general variant of Conjecture 1.1 over regular semilocal
rings containing fields was established by Panin and Fedorov-Panin ([Pan20, FP15]); Cesnaviéius [Ces22a]
settled the unramified quasi-split case (the prior split case is [Fed22]); recently, Guo—Liu [GL23] proved the
conjecture for constant group schemes and the smooth projective case was proved by Guo—Panin—Stavrova
[GP23,PS23a,PS23b]. The goal of this article is to settle the analogue of Conjecture 1.1 when R is
instead assumed to be a valuation ring. This variant is expected because of the following consequence of
the resolution of singularities conjecture, a weak form of Zariski’s local uniformization.

Conjecture 1.2 (Zariski). Every valuation ring is a filtered direct limit of regular local Tings.

Even though Conjecture 1.2 is weaker than Zariski’s local uniformization, all its known results come from
resolutions or alternations. For a variety X over a field k, when chark = 0, the local uniformization was
resolved by Zariski [Zar40]; when char k > 0, it was proved for 3-folds [Abh66, Cut09, CP08, CP09] and
surfaces [Abh56]. Temkin [Tem13] achieved the local uniformization after taking a purely inseparable
extension of function fields. For a valuation ring V' whose fraction field K has no degree p extensions (e.g.,
K is algebraically closed) where p is the residue characteristic, Conjecture 1.2 follows from p-primary
alterations [Tem17]. When dim X > 4 and char k£ > 0, the local uniformization is widely open.

By assuming Conjecture 1.2, a limit argument [Gir71, VII, 2.1.6] reduces the Grothendieck—Serre over
valuation rings to Conjecture 1.1. In particular, Conjectures 1.1 and 1.2 predict the following main result.

Theorem 1.3. For a reductive group scheme G over a valuation ring V with fraction field K, the map

HL(V,G) — HL(K,G) is injective. (&)

The special case of Theorem 1.3 when G is an orthogonal group for a nondegenerate quadratic form and
V is a valuation ring in which 2 is invertible was proved in [CTS87, 6.4] and [CLRR80, Thm. 4.5].

Besides its connection to the resolution of singularities, the considered variant Theorem 1.3 offers a few
glimpses of the behavior of torsors in the nonarchimedean geometry (more precisely, the rigid-analytic
geometry), where the building blocks are affinoids over fraction fields of certain valuation rings (indeed,
nonarchimedean fields) and valuation rings usually emerge as rings of definition in Huber pairs. Not
to mention, the simplest objects in perfectoid spaces, perfectoid fields, are required to be nondiscrete
valued fields, whose valuation rings are non-Noetherian. Also, the following proposition shows that the
Grothendieck—Serre over valuation rings yields patching of torsors with respect to arc-covers (Cf. [BM21]).

Proposition 1.4 (Corollary 4.6). For a valuation ring V' of rank n > 0, the prime p <V of height n — 1,
and a reductive V -group scheme G, the following map

Im(G(Vy) = G(k(p))) - Im(G(V/p) — G(r(p))) - G(r(p)) s surjective.

The non-Noetherianness of general valuation rings introduces considerable subtleties, even when G is
a torus. Namely, in this case we can no longer adopt the method of [CTS87, 4.1] and need to devise
alternative arguments. For instance, a crucial ingredient of ibid. is the exact sequence of étale sheaves

0— Gm’s — ’L'*(Gm’g) — (—Dmes(l)%*(z ) — 0, (1.4.1)

—x

where S is a semilocal regular scheme with the union of generic points i : { — S and x ranges over the
points of codimension 1. Being used in the proof of op. cit., 2.2, however, the short exact sequence (1.4.1)
fails for general valuation rings. For a valuation ring with fraction field K and value group I', we have

0->V*—>K* T —0,
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where the abelian group T is typically infinitely generated, rendering the arguments in [CTS78, CTS87]
knotty to emulate. To circumvent this, after using a flasque resolution of tori, we apply local cohomology
techniques to induct on the Krull dimension of the valuation ring. This reduces us to the following:

for a flasque torus F over a valuation ring (V, my ) of finite rank, we have HZ (V,F)=0. ()

For a flasque torus with character group A, by definition (§2.5), the Galois action on A has special
properties, so certain Galois cohomology of A vanishes, which leads to the vanishing of local cohomology
() and therefore the case of tori:

Proposition 1.5 (Proposition 2.7). For a torus T over a valuation ring V with fraction field K,
the map HL(V,T) — HL(K,T) is injective.
For a multiplicative type group M of finite type over V, the map between pointed sets of fpgec cohomology
Hioo(V,M) — Hg (K, M) is injective.

This case of tori, in turn, yields the simplest case of the product formula stated in (1.5.1) below (or, see
Lemma 4.4), which is essential for further reduction of Theorem 1.3.

A practical advantage of Henselian rank-one valuation rings is that several techniques of Bruhat—Tits
theory, especially in [BT;, §4-5], become available. The goal of §3 and §4 is to reduce Theorem 1.3 to this
case: after a limit argument that leads to the case of finite rank, we induct on the rank n of a valuation
ring V by patching torsors. The induction hypothesis implies that our G-torsor over V is a gluing of
trivial torsors. For this gluing, we choose an a € V such that the a-adic completion V" is a rank-one
Henselian valuation ring with K® := Frac Y//\“; so that, V[%] is a valuation ring of rank n — 1. Similar to
the Beauville-Laszlo’s gluing of bundles, our patching is reformulated as the product formula

G(K*) =Im(G(V[L]) —» G(K)) - G(V™). (1.5.1)
The strategy for proving this formula is a “dévissage” that establishes approximation properties of certain
subgroups of G,. In this procedure, techniques of algebraization [BC22, §2] play an important role,
especially for a Harder-type approximation (see §3) and the following higher rank counterpart of [Pra82].

Proposition 1.6 (Proposition 4.3). For a reductive anisotropic group scheme G over a Henselian

valuation ring V with fraction field K, we have G(V) = G(K).

Based on its special case when K = K is complete due to Maculan [Mac17, Thm. 1.1], our approach to
Proposition 1.6 is a reduction to completion that rests on techniques of algebraization to approximate
schemes characterizing the anisotropicity of G.. Indeed, Proposition 1.6 is an anisotropic version of the
product formula (1.5.1). Proposition 1.6 is helpful, not only for the reduction to the Henselian rank-one
case, but also for the induction on Levi subgroups when reducing to the semisimple anisotropic case in §5.
After these reductions, we transfer Theorem 1.3 into the injectivity of a map of Galois cohomologies. We
conclude by taking advantage of properties of parahoric subgroups in Bruhat—Tits theory, see Theorem 6.1.

In addition to techniques of algebraization, another crucial element of our reduction to the Henselian
rank-one case is a lifting property of maximal tori of reductive group schemes.

Lemma 1.7 (Lemma 3.10). For a reductive group scheme G over a local ring (R, k) with a maximal
k-torus T, if the cardinality of k is at least dim(G??), then G has a mazimal R-torus 7 such that

T =T.

This strengthens a result of Grothendieck [SGA 37, XIV, 3.20] that a maximal torus of a reductive group
scheme exists Zariski-locally on the base. By a correspondence of maximal tori and regular sections, the
novelty is to lift regular sections instead of merely proving their existence Zariski-locally. Depending on
inspection of the reasoning for ¢bid., the key point is [Bar(7], which guarantees that Lie algebras over
fields with large cardinalities contain regular sections. For lifting regular sections, we need the functorial
property of Killing polynomials. Indeed, Killing polynomials over rings were defined ambiguously in
in the original literature, see [SGA 317, XIV, 2.2]. Therefore, to establish Lemma 1.7, we first add the
supplementary details §3.8 for Killing polynomials over rings. Subsequently, for a Lie algebra with locally
3



constant nilpotent rank, we use the functoriality of Killing polynomials to deduce the openness of the
regular locus. This openness permits us to lift regular sections, which amounts to lifting maximal tori.

In §7, we acquire a variant of Nisnevich’s purity conjecture [Nis89, 1.3], whose statement is the following.

Conjecture 1.8 (Nisnevich’s purity). For a reductive group scheme G over a regular local ring R with a
reqular parameter f € mR\m%, every Zariski-locally trivial G-torsor over R[%] is trivial, that is, we have

Hz,(R[$],G) = {x}.

This conjecture generalizes Quillen’s conjecture [Qui76, Comments] when G = GL,, and was proved by
Gabber [Gab81] for G = GL,, and PGL,, when dim R < 3. In this article, we consider a variant: for a
valuation ring V' and its ring of formal power series V[t], we let R = V[t] and f = ¢, hence R[%] = V().

Proposition 1.9 (Corollary 7.6). For a reductive group scheme G over a valuation ring V, every
Zariski-locally trivial G-torsor over V ((t)) is trivial, that is, we have

Hz, (V(#),G) = {}.

This Proposition 1.9 follows from the injectivity of the map HZ (V((t)),G) — H} (K ((t),G) proved in
Proposition 7.5. In fact, by cohomological properties of reflexive sheaves (see 7.1), every étale GL,,-torsor
over V((t)) is trivial. With an embedding G — GL,,, we obtain Proposition 1.9 by patching torsors.

1.10. Notation and conventions. For various notions and properties about valuation rings and valued
fields, see Appendix §A. We adopt the notion in [SGA 3i1 ew] for reductive group schemes: they are
group schemes smooth affine over their base schemes, such that each geometric fiber is connected and
contains no normal subgroup that is an iterated extension of G,. For a valuation ring V', we denote by
my the maximal ideal of V. When V has finite rank n, for the prime p < V of height n — 1 and a € my/\p,
we denote by V" the a-adic completion of V. For a module M finitely generated over a topological ring
A, we endow M with the canonical topology as the quotient of the product topology via 7w: A®™ — M.
By [GR18, 8.3.34], this topology on M is independent of the choice of .
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2. THE CASE OF TORI

The goal of this section is to prove the Grothendieck—Serre conjecture over valuation rings for tori, a
non-Noetherian counterpart of Colliot-Théléne-Sansuc’s result [CTS87, 4.1], then we extend it to groups
of multiplicative type (Proposition 2.7 (ii)). Colliot-Théléne and Sansuc defined flasque resolutions of tori
over arbitrary base schemes, yielding several cohomological properties of tori over regular schemes. In
particular, they proved that for a torus T over a semilocal regular ring R with total ring of fractions K,

the map H(R,T) — H(K,T) is injective, (2.0.1)

which is a stronger version of the Grothendieck—Serre conjecture for tori, see [CTS87, 4.1]. Nevertheless,
if we substitute R in (2.0.1) with a valuation ring V', then the method in ibid. does not work any more
because of the non-Noetherianness of V. Seeking an alternative argument in this case, we induct on the
rank of V' and use local cohomology. This case of tori obtained in Proposition 2.7 is crucial for subsequent
steps of the proof of Theorem 1.3, such as for patching torsors (see Propositions 4.5 and 4.7).
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2.1. Group schemes of multiplicative type. For a scheme S and an S-group scheme G, the Cartier
dual of G is an fpqc sheaf Z5(G) := Homg.gr (G,Gp,,s). Recall [SGA 3y, IX, 1.1] that G is of multiplica-
tive type, if every s € S has an fpqc neighborhood U such that Gy ~ Py (My) = Homy-g. (My, G vr)
for a commutative group M. An S-group G of multiplicative type is isotrivial, if there exists a finite étale
surjective morphism S’ — S such that s (Gg) is a constant commutative group on each connected
component of S" ([SGA 3y, IX, 1.4.1]). Assume that S is connected. One can replace S’ by one of its
connected component and apply [SP, 0BN2| to find an S-morphism S” — S’ of schemes for a Galois
cover S” of S (by [SGA 1,ew, V, 5.11], §” is a connected I g-torsor for a finite group I'). Then, since
T" has finitely many quotients, there is a minimal Galois cover S /S such that Z5(G3) is constant: the
minimality of §/S means that there are no nontrivial Galois subcovers § — §” — § such that P5(Gg) is
constant. We also say that §/S is a minimal Galois cover splitting G (or, such that G g splits). Moreover,
since S is assumed to be connected, for every geometric point s: Spec) — S of S with fundamental
group 7 := 7¢*(S,5), where Q is an algebraically closed field, there is an anti-equivalence [SGA 31, X, 1.2]
isotrivial multiplicative | ~ m-modules with )
{ type S-groups } 7 {continuous actions} G M (G) := 75(Gs) = Homg.gr (G5, Gmys).
In particular, the category of isotrivial S-tori is anti-equivalent to the category of finite type Z-lattices
with continuous 7-actions. So, every isotrivial S-torus 7" of rank n corresponds to an equivalence class of

representations  pr: m — GL,(Z) such that ker pr 7 is an open normal subgroup.

If pr and pf. are in the same equivalence class, then ker pr = ker p/.. The finite quotient I' := 7/ ker pp
then yields a minimal Galois cover S/S splitting 7" with Galois group I' and 7¢*(S) ~ ker pr. Hence, all
minimal Galois covers splitting T are isomorphic to each other via the Galois group T'-action.

Lemma 2.2. For an irreducible geometrically unibranch scheme S of function field K and an S-torus T,

T contains Gﬁ%s if and only if Tk contains an’K.

Proof. It suffices to assume that an, x € Tk and to deduce that an) g < T. Let 7 be a geometric point
over the generic point Spec K -5 S. We have .# (T) = Homy g, (T55, Gyn ) = # (Tk). Note that an,K
corresponds to a quotient lattice A of .# (Tk) such that A is of rank k with trivial 7$*(K)-action. On
the other hand, by [SP, 0BQI], the natural map 7¢*(K) — w$t(9) is surjective. Therefore, .# (T) has a
quotient lattice that has rank k with trivial 7$t(S)-action. This implies that Gfm gcT. g

Recall [EGA I, 2.1.8] that a scheme S is locally integral, if for every s € S, the local ring Os ; is integral.
Hence, by definition, every connected component of S is both an open and closed subset of S. With this
notion, we generalize Grothendieck’s result [SGA 3y, X, 5.16] by relaxing its Noetherian constraint.

Lemma 2.3. For a locally integral, geometrically unibranch scheme S, every S-group scheme M of
multiplicative type and of finite type is isotrivial. In particular, for every torus T over a mormal domain
R, there is a minimal Galois cover R of R such that Ty splits.

Proof. Since every connected component of S is open, we may assume that S is connected. Then,
M is fpqc locally of the form Z(H) for a finite type abelian group H (determined by M). For P :=
Isomg ,, (M, Zs(H)), our goal is to find a finite étale cover S” — S such that P(S’) # . By [SGA 311, X,
5.8, 5.10 (i)], P is representable by a clopen subscheme of Homg ,, (M, Zs(H)) and there is an étale
surjective morphism S — § such that Py is a disjoint union of copies of S. In particular, P is S-étale. By

[ECA TV, 18.8.15, 18.10.7], S is locally integral and geometrically unibranch. We prove the following.
Claim 2.3.1. Every irreducible component P; of P is finite étale over S.

Proof of the claim. Let 1) € S be the generic point and let &; be the generic point of P;. By [EGA TV, 2.3.4],
the S-flatness of P implies that every §; lies over 1. Therefore, (P;), is the closure of & in P,. The
quasi-finiteness of P — S implies that P, is discrete, so we have (P;), = {¢;}. On the other hand, since
S is integral and geometrically unibranch, by [ECA TV, 18.10.7], all P; are geometrically unibranch, and

P=cp, P
5
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Therefore, every P; is clopen in P. Since it suffices to show that each (F;)g is §—ﬁnite, note that every
connected component of S is open, we may assume that S is connected so that Pz = | |, S for a set U.
Each P; ¢ P satisfies that (P;)g = [ |3, S for a subset ®; = W. As (F;), = {{;} is a single point, this

forces that ®; is finite. Consequently, the base change (P;)g is finite over S, so P; is S-finite. d
As S is connected and all P, — S are finite étale, take S’ := P;, whose image is S. The canonical
embedding S’ < P then induces a section of Pss — S’ so we get Mg ~ PDg/(H), as desired. O

Proposition 2.4. Let X be a connected scheme, let T be an isotrivial X -torus, and let Y — X be a
minimal Galois cover splitting T. For a morphism f: X' — X of connected schemes, every connected
component of Y :=Y xx X' is a minimal Galois cover splitting Tx.

Proof. Let T := Autx (Y") be the Galois group of Y /X, then Y is a I y-torsor on X, and Y is a I y,-torsor
on X'. In particular, I' acts transitively on each X’-fiber of Y’, hence induces isomorphisms among
connected components of Y’. We choose a geometric point 7 — Y’, and denote its composites as
n—Y, ¢ — X', and £ — X, respectively. Recall [SP, 0BND] that the fiber functors Fg: FEtxy —
Finite-7$* (X, €)-sets and Fg : FEty, — Finite-7§t (X', £’)-sets are equivalences of categories. Besides,
f induces a continuous homomorphism fy: 7¢t(X’, ¢") — $t (X, €) of profinite groups, fitting into the
following commutative diagram

base change

FEtyx FEt x/

") B
f*

Finite-m¢* (X, £)-sets Finite-m* (X', ¢')-sets.

Thus, we have Fe/ (Y') = f*Fg( ) = Fe(Y) =T set-theoretically and the following short exact sequence
1o 2 (Y, ) = (X, ) = T = Autrser (Fe(Y)) — 1.

By the commutative diagram above, the 7t(X’, £')-action on Fe:(Y”) is equal to the 7$(X’, ¢')-action on

F¢(Y) via the composite 7¢*(X”, &) T e 74X, &) — T, whose image is denoted by I” < I'. The surjection

(X7, &) — T gives rise to the 7wt(X’, ¢')-set structure on Fi(Y”). Precisely, the m¢*(X’, ¢’)-action on

Fer(Y') is just the restriction IV x I' > T' of I' x I' — T, leading to the coset decomposition for IV < T’

I'= I_l'yef’\F(Fl )

so that all left TV-actions on I - v are simply transitive and all I - v have the same I'-set structure.
Hence, the equivalence Fer: FEty, — Finite-¢t(X’, ¢')-sets (combined with [SP, 03SF]) implies that
(I'" - ¥)yernr correspond to Galois covers (Y7) ernr of X' that are isomorphic to each other. Further, the
finite w¢*(X’, &')-set Fe (Y') corresponds to Y’, which decomposes into connected components

V' =ernr Y5,
where Y. are Galois covers of X’ with Galois group I'. If  — Y factors through Y7 , then the following
1— (Y] ,n) —» mfH (X', ¢) > T’ = Gal(Y] /X') — 1

is a short exact sequence. Since the torus T induces a representation pr: 7¢*(X, &) — GL(Z") with the
image I', where Z" ~ Homg g, (T¢, G, ), its base change T'x induces a representation fyopr: (X' &) —
GL(Z"). By construction of I, we have I'" = Im(f4 o pr). So the desired minimality of Y amounts to
the equality I = 7{* (X", &) /m$* (Y ,7'), which follows from the last displayed short exact sequence. [

2.5. Flasque resolution of tori. The concepts of quasitrivial and flasque tori are rooted in two special
Galois modules that serve as character groups: permutation and flasque modules. For a finite group G,
let L& be the category of G-modules that are finite type Z-lattices. If a module M € L has a Z-basis
on which G acts via permutations, then M is a permutation module; in this case, M ~ @®;Z[G/H;] for
certain subgroups H; < G. If a module N € Lg satisfies H' (G, Homz (N, Q)) = 0 for any permutation
module @, then N is a flasque module. For example, a trivial G-module Qg € L is a permutation module
and H!(G,Homz(N, Qo)) = 0 for any flasque G-module N. For a scheme S and an S-torus 7, if every
connected component Z of S has a Galois cover Z' — Z with Galois group G splitting T such that the
G-module Z5(T)(Z’) is flasque (resp., permutation), then T is flasque (resp., quasitrivial). When S is
6


https://stacks.math.columbia.edu/tag/0BND
https://stacks.math.columbia.edu/tag/03SF

connected, every quasitrivial torus is a finite product of Weil restrictions Resg; /5(Gyy,) for finite étale
connected covers Si — S. As proved in [CTS87, Thm. 1.3], for a torus T over a scheme S whose every
connected component is open, there is a short exact sequence of S-tori, that is, a flasque resolution of T

1-F—->P->T-—>1, where F is flasque and P is quasitrivial. (2.5.1)

Lemma 2.6. For a flasque torus F' over a valuation ring V' of finite rank, the local cohomology vanishes:
HZ (V,F)=0.

Proof. We denote X = SpecV and Z = Spec(V/my ). Let n = 1 be the rank of V, then X\Z is the
spectrum of a valuation ring of rank n — 1. By excision [Mil80, III, 1.28], we may replace X by its
Henselization X!, For a variable X-étale scheme X’ with preimage Z’' := X’ x x Z, let H%,(—, F) be the
étale sheafification of the presheaf X’ +— H7, (X', F). By the local-to-global Ey spectral sequence

HE (X, 1Y (X, F)) = H (X, F), ([SGA 411, V, 6.4])
to show that HZ (X, F) = 0, it suffices to obtain the following vanishings
Hgt(Xa HzZ(Xv F)) = Helt(XaHIZ(Xv F)) = He?t(Xv H%(Xv F)) =0.
Subsequently, in the following two paragraphs, we calculate H% (X, F) for 0 < ¢ < 2.

Let T — X be a geometric point. If Z factors through X\Z, then H% (X, F)z = 0. Now, we take T as a
fixed geometric point over my, so H% (X, F)z = H%V (VP F), where V! is the strict Henselization of V

with the maximal ideal my. The local map V — V*! of local rings is faithfully flat ([SP, 07QM]) and
preserves value groups ([SP, 0ASK]). Therefore, for the prime p € V of height n — 1, there is a unique
prime ideal ¢ = V! lying over p (that is, pV*" = ). By [SGA 41, V, 6.5], we have the exact sequence

o HE (VO F) o HE(Vh)gs, F) — HEL(V, F) o I (V0 F) o (2.6.1)
First, we compute HE (V" F) when ¢ = 0 and 2. The injectivity of H (V" F) < HG ((V*")q, F)
and the vanishings of H} ((V*")q, F) and HZ (V" F) for i = 1,2 (see [SP, 03QO]) imply the following
HY (V" F)=Hz (V" F)=0. (2.6.2)
This (2.6.2) leads to HY (X, F) = H%(X,F) = 0, so we get HY, (X, H%(X,F)) = H%(X,HY (X, F)) = 0.
Next, we calculate Hy (V*", F). From (2.6.1) we obtain the following short exact sequence:
0 — Hg (V" F) — HG (V") F) — Hg, (V' F) — Hi (V" F) = 0.
For the Cartier dual Zx (F) of F, let A := Zx(F)(V*") and AV := Homgz(A, Z). By Cartier duality,
HY (VM F) = F (VsP) = AHomy_g (Dx (F),Gp) (V") = Homz (A, (VSR)*) = AY @z (V=)
and similarly, HY (VMg F) =~ AY @z (VSh)g.
The value group I'yn gz of Vb 3. by Proposition A.2 (v), is isomorphic to (VSh);}/(VSh)X. Therefore,
Hy, (VS F) = (A ®z (V")3)/(AY ®z (V1)) = A @z Ty .

Since X is Henselian local and H (X, F') is an abelian sheaf on X, by [SGA 4;;, VIII, 8.6], we have

Hi (X, Hy(X,F)) = H (a$'(V), Hy, (V" F)) = H (n$"(V), Homz (A, T'ven ). (2.6.3)

To see the action of 7$* (V') on Homz(A, T'yen ), by Lemma 2.3, we first note that the 7$*(V)-action on
A factors through its quotient Gal(Y/X), where Y is the minimal Galois cover of X splitting F'. Besides,

[SP, 05WS] [SP, 0ASK]

Loy jpyn vy,

so 7$"(V) acts trivially on Ty = Frac(V/p)*/(V/p)*. Thus, the 7{*(V)-action on Homg (A, Ty )
factors through Gal(Y/X). Since 7¢*(V) is a projective limit of finite groups Gal(X,/X), where X,
ranges over Galois covers of X, a limit argument [Ser02, I, §2.2, Cor. 1] reduces (2.6.3) to

HY (X, Hy (X, F)) ~lim_ H'(Gal(X,/X), Homg(A, Ty o) (X)), (2.6.4)

We express I'y /, as a direct limit of finite type Z-submodules (T';)icr. Since A is Z-finitely presented,

lim,_ Homz(A,T;) — Homz(A, Ty ). (2.6.5)
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Combining the isomorphism (2.6.5) with a limit argument [Ser02, I, §2.2, Prop. 8], we reduce (2.6.4) to
lim H' (Gal(Xo/X), lig,, Homz(A, L) X)) = lim  lim, H'(Gal(X,/X), Homg (A, T;)™ (X)),
It suffices to calculate for a large g such that X,, splits F. In this situation, 7¢*(X,,) acts trivially
on Homgz(A,T;). Since F is a flasque torus, its character group A is a flasque Gal(X,,/X)-module.

As aforementioned, Gal(Xq,/X) acts trivially on I'y /,, so the T'; are finite type Z-lattices with trivial
Gal(X,,/X)-action. The example in §2.5 implies H!(Gal(X,,/X), Homz(A,T;)) = 0, which verifies that

Helt(XaHIZ(XvF)):O u

Proposition 2.7. For a valuation ring V' and a finite type V -group scheme M of multiplicative type,

(i) HE

quc(v7 M) — Hfzqu(Frac V, M) is injective; in particular, the restriction of Brauer group

Br(V) < Br(FracV) is injective;
(if) H}NC(V7 M) — Hflpqc(FracV, M) is injective.

Proof. As V is a filtered direct union of valuation subrings of finite rank ([BM21, 2.22]), a limit argument
[SGA 41, VII, 5.7] reduces us to the case when V has finite rank n. Note that for a quasitrivial V-torus
P, we have P ~ [ [ Resgr/spec vGm for finite étale connected V-schemes Si, 50 [SGA 3111 pew, XIX, 8.4]

gives an isomorphism H} (V, P) = [[¢ HZ (S}, Gy,). The Grothendieck—Hilbert’s 90 [SGA 3y, VIII, 4.5]
identifies H} (S}, G,,) ~ H}, (S}, Gy,), which are trivial by [BouAC, II, §5, no. 3, Prop. 5]. So we have

H},(V,P) = {x} for every quasitrivial V-torus P.
(i) First, we reduce to the case for flasque tori. By the short exact sequence [CTS87, 1.3.2]
1-M-—>F—->P-—1,

where F' is flasque and P is quasitrivial, we obtain the commutative diagram with exact rows

Hflpqc(‘/’ P) Hf2pqc(‘/7 M) Hprqc(Vva F)

l |

H?qu(Frac VM) — H?qu(Frac V,F),

where Hg  (V, P) = H{ (V, P) = {+}. Hence, it suffices to prove the assertion for the flasque F.

Next, we induct on the rank n of V. The case of V = FracV is trivial, so when n > 1, for the
prime p of V' of height n — 1, we assume that the assertion holds for V}, (which has rank n — 1).
Denote X = SpecV and Z = Spec(V/my ). By [SGA 4y, V, 6.5], we have the long exact sequence:

- > HZ(X,F) —> HE (X, F) > HE ( (X = Z,F) > H}(X,F) —> . (2.7.1)
We conclude by the induction hypothesis and HZ (X, F) = 0 proved in Lemma 2.6.

(ii) We first reduce to the case when M is a torus. The isotriviality of M yields a short exact sequence
1->T->M - pu—1,

where T is a V-torus and p is a finite multiplicative type V-group. For the commutative diagram
/L(V) Hflpqc(‘/v? T) Hflpqc(‘/v? M) ‘E[flpqc(‘/7 /1’)

| | l

p(FracV) —— Hflqu(FracV,T) — Hflqu(FracV,M) — Hflpqc(Frac V. 1)

with exact rows, the valuative criterion for properness of u leads to pu(V) = p(Frac V') and the
injectivity of Hflqu(V, n) — Hflpqc(Frac V, ). Thus, a diagram chase reduces us to showing that

H}(V,T) — H} (FracV,T)  is injective.
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A flasque resolution of T" as (2.5.1) leads to the following commutative diagram with exact rows

Hg (V. P) Hg, (V. T) HE (V. F)

| |

H} (FracV,T) —— HZ (FracV, F),

where H} (V, P) = {«}. Since the map HZ (V, F) — HZ (FracV, F) is injective by (i), the map
H(V,T) — H} (FracV,T) is injective. O

Corollary 2.8. For a flasque torus F over a valuation ring V with fraction field K, the map
H}(V,F) = HL (K, F) is an isomorphism.

Proof. The injectivity follows from Proposition 2.7 (ii). A limit argument reduces us to the case when V'
has finite rank, then we iteratively use Lemma 2.6 with the following exact sequence (cf. 2.7.1)

Hg(V, F) — Hg(Spec V\{my}, F) — Hg (V. F) = 0,

to reduce the rank of valuation rings by removing closed points, so the surjectivity follows. O

3. ALGEBRAIZATIONS AND A HARDER-TYPE APPROXIMATION

The upshot of this section is Proposition 3.19, a higher-height analogue of Harder’s weak approximation
[Har68, Satz. 2.1] to reduce Theorem 1.3 to the case of Henselian rank-one valuation rings. To prove this,
we take advantage of techniques of algebraization from [BC22, §2] and Conrad’s topologization of points.

3.1. Topologizing R-points of schemes. For a topological ring R and an R-scheme (or R-algebraic
stack) X, the problem of topologizing X (R) functorially in X compatible with the topology of R has
been studied in recent years. Precisely, we expect a topology on X (R) satisfying some of the following

(i) each R-morphism X — X’ induces a continuous map X (R) — X'(R);
(ii) for every integer n > 0, we have a canonical homeomorphism A™(R) ~ R™;
(iii) each closed immersion X — X’ induces an embedding X (R) — X'(R);
(iv) each open immersion X — X’ induces an open embedding X (R) — X'(R); and
(v) for all R-morphisms X’ — X «— X" of R-schemes, the identifications

(X' xx X")(R) = X'(R) xx(r) X" (R) are homeomorphisms.

For all affine schemes X of finite type over R, Conrad proved [Conl2, Prop. 2.1] that there is a unique
way to topologize X (R) such that (i)—(iii) and (v) are satisfied. Such topologization is realized by taking
a closed immersion X — A% and endowing X (R) with the subspace topology from R". The resulting
topology is not dependent on the choice of embeddings. For schemes X locally of finite type over R,
topologizing X (R) is reduced to the affine case by patching open affine subschemes of X, which calls
for several extra constraints on R. Namely, under the assumption that R is local and R* < R is open
with continuous inversion (e.g., Hausdorff topological fields and arbitrary valuation rings with valuation
topology), Conrad showed [Conl2, Prop. 3.1] that there is a unique way to topologize X (R) satisfying
(i)~(v) for all schemes X locally of finite type over R. Subsequently, Cesnavicius generalized Conrad’s
result to algebraic stacks (¢f. [MBO1, Section. 2] for the case of Hausdorff topological fields). Without
the local assumption, if R* < R is open with continuous inversion, then X (R) can be topologized for
(ind-)quasi-affine or (sub)projective R-schemes X, see [BC22, §2.2.7]. Note that all aforementioned results
are generalizations of Conrad’s version, hence they are compatible when restricting the families of X or
of R. Since we only consider schemes, our topologization only involves the following formation of Conrad.

Lemma 3.2 ([Conl2, Prop. 3.1]). Let R be a local topological ring such that R* < R is open with

continuous inversion. There is a unique way to topologize X (R) satisfying (i)—(v) for all schemes X

locally of finite type over R. Moreover, if R is Hausdorff and X is R-separated, then X (R) is Hausdorf}.
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Lemma 3.3 ([Conl2, Ex. 2.2]). For any continuous map R’ — R of topological rings and any affine
scheme X of finite type over R, the natural homomorphism X(R) — X (R') is continuous. Moreover, if
R’ < R is closed (resp., open) subring, then X (R) — X (R') is a closed (resp., open) embedding.

Definition 3.4. For a topological ring R and a scheme X locally of finite type over R, if X(R) can be
topologized as in §3.1, then we say that X (R) has a topology induced from R. In particular, if there is an
ideal I < R such that the topology on R is I-adic, then the induced topology on X (R) is called I-adic.

Now, we apply Conrad’s formation to our case when R is a valued field. Recall §A.3 and Proposition A.4
that for every valued field (K, v), there is a valuation topology determined by v and it is Hausdorff. By
A8, a valued field (K, v) is nonarchimedean, if the valuation topology on K is induced by a nontrivial
rank-one valuation, or equivalently, the valuation ring V' (v) of K has a prime of height one.

Lemma 3.5. Let (K,v) be a valued field and let X be a scheme locally of finite type over K.
(i) The set X(K) has a topology induced from the valuation topology on K.
(ii) If X is separated over K, then X (K) is Hausdorff for the valuation topology.

(iii) For the valuation ring V < K and an affine finite type V-scheme Y, the natural map Y (V) —
Y(K) is a closed and open embedding for the valuation topology.

(iv) If K is Henselian nonarchimedean and X is K-smooth, then for the completion K of K and the
topologies on X(K) and on X (K) induced from K and K respectively, the following map

X(K)— X(I?) has dense image.

Proof. For (i) and (ii), note that by Proposition A.4, K is Hausdorff so K* < K is open. It is clear that
the inversion on K * is continuous for the subspace topology. It suffices to use Lemma 3.2 to topologize
X (K); moreover, if X is separated over K, then X (K) is Hausdorff for the valuation topology. The
assertion (iii) follows from Lemma 3.3 and Proposition A.4 that the ball V < K is closed and open.

For (iv), we recall §A.11 that the topology on K is indeed a-adic for an a € V' such that +/(a) is of height
one. Thus K is the a-adic completion K. We then apply [BC22, 2.2.10 (iii)] and check the conditions:

- Let the topological ring B be K with a-adic topology. Then B = K* and (.f('\")X c K*is an
open subring with continuous inversion.

- Let the nonunital open subring B’ be the ideal (a) of the valuation ring V. The induced topology on
(a) has an open neighborhood base of zero consisting of ideals (a™),>1 < (a) (Proposition A.10 (i)).

- The nonunital ring (a) is Henselian in the sense of Gabber ([B(22, 2.2.1]), that is, every polynomial
(1) =TN(T—-1)+anTN +---+a,T+ap where a; € (a) and N > 1 has a (unique) root in 1+ (a).
Because V is Henselian, by [SP, 0DYD], the pair (V, (a)) is also Henselian. Hence, Gabber’s
criterion shows that (a) is Henselian, so the conditions in [BC22, 2.2.10 (iii)] are satisfied. O

Lemma 3.6. For a Henselian valued field F,

(i) every smooth morphism f: X — Y between F'-schemes locally of finite type induces an open map
of topological spaces fiop: X(F) — Y (F);
(ii) for a monomorphism of F-flat locally finitely presented group schemes G' — G where G is

F-smooth, and the F-algebraic space G" := G/G', the map G(F) — G"(F) is open.

Proof. For (i), see [GGMBI14, 3.1.4] and note that the ‘topological Henselianity’ there yields the desired
openness by loc. cit., 3.1.2. For (ii), see [Ces15, 4.3 (a) and 2.8 (2)], where R is our F. O

In addition to the topological properties above, the following lemma will be used repeatedly in the sequel.
Lemma 3.7. For a topological group G, an open subgroup H c G, and a subset S < G, we have

S-H=S-H.
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Proof. Since S+ H < S - H, it suffices to see that S+ H = S - H. The subset G\(S - H) is a union of g; H
for some g; € G, hence is open. In particular, S - H is closed, so the assertion follows. O

3.8. Regular sections, Cartan subalgebras and subgroups of type (C). Let R be a ring and let
b be a Lie algebra over R as a locally free module of rank n. The Lie algebra structure (Lie bracket) is a
morphism A:  — Endg(h). For any R-algebra R’, the i-th coefficient of the characteristic polynomial of
degree n for B € Endg/(hg/) is of the form (—1)""*Tr(A™~B), so the i-th coefficient of the characteristic
polynomial is a morphism Endg(h)® — R. Composing A®? with the last morphism, we get
¢ h® - R,

hence ¢; € (h¥)®" < T'(Sym . (h")). We define the Killing polynomial of b as Py(t) := t" +c1t" "+ +cp €
F(MR(UV))[t]. By construction, the formation of Killing polynomials commutes with base change.
When R is a field k, the largest r such that Py (¢) is divisible by ¢” is the nilpotent rank of . The nilpotent
rank of the Lie algebra of a reductive group scheme is étale-locally constant (see [SGA 37, XV, 7.3] and
[SGA 3111 new, XXI1, 5.1.2, 5.1.3]). Every a € b satisfying ¢,,—,(a) # 0 is called a regular element. Let
G be a reductive group scheme over a scheme S. For the Lie algebra g of G, if a subalgebra 0 < g is
Zariski-locally a direct summand such that its geometric fiber 0z at each s € S is nilpotent and equals
to its own normalizer, then o is a Cartan subalgebra of g ([SGA 3;, XIV, 2.4]). We say an S-subgroup
D c G is of type (C), if D is S-smooth with connected fibers, and Lie(D) < g is a Cartan subalgebra. A
section o of g is a regular section, if o is in a Cartan subalgebra such that o(s) € gs is a regular element
for all s € .S. A section of g with regular fibers is quasi-reqular, hence regular sections are quasi-regular.

3.9. Schemes of maximal tori. For a reductive group scheme G defined over a scheme S, the functor
Tor(G): Sch?g — Set, S" +— {maximal tori of Gg}.

is representable by an S-affine smooth scheme ([SGA 3;1, XIV, 6.1]). For an S-scheme S’ and a maximal
torus T € Tor(G)(S’) of Gg/, by [SGA 3111 new, XXII, 5.8.3], the morphism defined by conjugating T

Gs — Tor(Gsr), g~ gTg™" (3.9.1)

induces an isomorphism Gg/Normg,  (T) = Tor(Gs). Here, Norm, ,(T') is an S"-smooth scheme (see
[SGA 31, XI, 2.4bis]). Now, we establish the following lifting property of Tor(G).

Lemma 3.10. Let G be a reductive group scheme over a local ring R with residue field k and Z the
center of G. If the cardinality of k is at least diim(G/Z), then the following map is surjective:

Tor(G)(R) — Tor(G) (k).

Proof. An isomorphism [SGA 31, XII, 4.7 ¢)] of schemes Tor(G) ~ Tor(G/Z) reduces us to the semisimple
adjoint case, where the maximal tori of G are exactly the subgroups of type (C) ([SGA 3;1, XIV, 3.18]).
These subgroups are bijectively assigned by D — Lie(D) to the Cartan subalgebras of g := Lie(G), see
ibid., 3.9. Tt suffices to lift a Cartan subalgebra ¢, C g, to that of g. Since §x = dim(G/Z) = dim(G),
by [Bar67, Thm. 1], ¢, is of the form Nil(a,) := |, ker(ad(aj;)) for some a, € ¢,. Hence [SGA 3y, XIII,
5.7] implies that each a, € ¢, is a regular element of g,,. We take a section a of g passing through a,
and claim that V := {s € Spec R | as € g5 is regular} is an open subset of Spec R. We may assume that
R is reduced. Since the nilpotent rank of g is locally constant, the Killing polynomial of g at every
s € Spec R is uniformly of the form Py (t) = t"(t" ™" + (c1)st™ "1 + -+ + (¢n—r)s) such that (c,_,)s is
nonzero. Thus, the regular locus in g is the principle open subset {c,—, # 0} € W(g). The morphism
W(g) — Spec R is flat, so V # (J is open, forcing that V = Spec R. In particular, the regular elements
ax € ¢ lifts to a quasi-regular section a € g, which by [SGA 3111 new, XIV, 3.7], is regular. By definition
of regular sections, there is a Cartan subalgebra of g containing a and is the desired lifting of ¢,. (|

Next, we combine this lifting property with techniques of algebraization to deduce the density Lemma 3.15.
The next pages will deal with localizations, a-adic topology and completions of valuation rings. It is
therefore recommended that readers refer to the Appendix A, especially §A.9 and Proposition A.10.

3.11. Rings of Cauchy sequences. To the best of our knowledge, it is Gabber who first considered
rings of Cauchy sequences (see also its generalization to Cauchy nets [BC22, 2.1.12]). In this article, we
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take only one particular form to suit our need. Concretely, for a ring A and a t € A such that 1 +¢t < A*,
consider the truncated Cauchy sequences (ay)nsn in A[+] for an n > 0. With termwise addition and
multiplication, all truncated Cauchy sequences form a ring Cauchyzn(A[%]). With this concept, one can
translate the approximation process into certain operations on rings of Cauchy sequences and thus grasp

the approximation properties through the algebrogeometric properties of the ring CauchyB"(A[%]).

3.12. Setup. In the sequel, consider the subcase of §3.11: let A = V be a valuation ring of rank n and let
t = a lie in my/\p for the prime p of height n — 1. By Proposition A.10, V[1] and the a-adic completion

P

V7* are valuation rings of ranks n — 1 and 1 respectively, and the a-adic completion VL] of V1] is

K* = Frac V". By Corollary A.12 and Proposition A.13, K" is nonarchimedean and V" is a Henselian
local ring. For every K“-scheme X locally of finite type, we will endow X (K“) with the a-adic topology.

Lemma 3.13. For the setup §5.12, the lim Cauchyzm(V[%]) is a local ring with residue field K*.

Proof. Taking a-adic completion of V[%] yields the following surjection map
A=lim o Cauchy”"(V[1]) — Ke,

whose kernel is denoted by I. For any sequence (by)x € I, its tail lies in Im(a™V — V[1]) for all m > 0,
so the tail of (1+ by)y consists of units in V' that lie in Im((1 + a™V) — V[1]). Since V[1] is local, the
tail of (1 + by)y is termwise invertible in V[1] and the inverses form a Cauchy sequence. Since I < A is
an ideal such that A/I is a field and 1 + I is invertible, A is a local ring with residue field K. O

Example 3.14. Consider the setup §3.12. Then Proposition A.4 implies that Ve c K is open and
closed. Let G be a reductive V-group scheme and recall Tor(G) (§3.9). By Lemma 3.5 (iii), the subsets
G(V*) < G(K*) and Tor(G)(V*) < Tor(G)(K*) are a-adically open and closed.

Lemma 3.15. Consider the setup §3.12. For a reductive V -group scheme G,

Py

the image of Tor(G)(V[L]) — Tor(G)(K*) is a-adically dense.

a

Proof. As shown in Lemma 3.13, the ring lim Cauchy=™ (V[1]) is local with residue field K*. Since

Tor(G) is finitely presented and affine over V[1], the lifting Lemma 3.10 leads to a surjection below

lim (Tor(G) (Cauchy=™(V[2]))) ~ Tor(G)(lim __ (Cauchy>™(V[L]))) — Tor(G)(K™).

—m=0

Due to this surjection, all elements in M(G)(f(\“) are limits of Cauchy sequences in Tor(G)(V[%]), hence
the image of the map Tor(G)(V[1]) — M(G)(f(\“) is a-adically dense in M(G)(f(\“). O

Roughly speaking, this density permits us to “replace” maximal tori of G, by those of Gy [1y. Next,
we obtain openness of certain maps, then take images to construct an open normal subgroup of G (f(\ )
contained in the closure of the image of G(V[1]) — G(K"). First, recall some criteria for openness.

Lemma 3.16. Consider the setup §3.12. Let T be a torus over V[1].
(i) There is a minimal Galois cover R of V1] splitting T (see §2.1), and we have isomorphisms
R@ys) K"~ R =~ [T/, Ls,

where R is the a-adic completion of R for the topology induced from V[%] FEach L,;/f(\“ s a
minimal Galois extension splitting T+, and is a-adically complete; in particular, any minimal
Galois extension Lo/K splitting T=, is isomorphic to L; for all i, that is, Lo ~ L; ~ L; fori # j.
(ii) For a minimal Galois field extension Lo/f(\“ splitting Tt,, the image U of the norm map
NLO/E(\& :T(Lo) > T(K")

is a-adically open in T(K®) and contained in the closure T(V[L]) of Im(T(V[]) — T(K®)).
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Proof.
(i)

(if)

The existence of a minimal Galois cover R/V[1] splitting 7" follows from Lemma 2.3. Since R
is a finite flat V[i]—module, it is free and we have R* ~ R®y1; K~ [T._, L;, where L; are
a-adically complete fields. By Proposition 2.4 and §2.1 we conclude.

First, we prove that U is a-adically open. For the norm map Res Lo/Ra
T is a torus: after some base change, T, splits as G¥,, so the associated Z-module of the

corresponding base change of T is the following Z-lattice with a trivial Galois action
Coker (Z* — Z[Gal(Lo/K*)]¥, (n;) = (n; - id)) ~ Z[Gal(Lo/ K*) — {id}]*.
So, by [SGA 31, IX, 2.1 e)], as a torus, the kernel T is K*-smooth. By Lemma 3.6 (ii), the map
N A(L Py

Loy T(Lo) = T(K"), ie.  (Resy 2.Ti,)(K*) — ((Resp, .Tr)/T)(K")

(Tr,) — T., its kernel

is a-adically open so the image U = N (T'(Lp)) < T(f(\“) is a-adically open.

o/Ke
Next, we prove that U < T (V[%]) The isomorphism R~ [1;_, L; obtained in (i) implies that
the image of R* — ]_[2:1 L is a-adically dense. As T is split, the image of the composite

T pr
T(R) = [[;_1 T(L;) = T(L1) = T(Lo)
is a-adically dense. Composing this with N Lo/Rar WE see that T(R) has dense image in
U = NLO/IA{G(T(LO))' The composite T(R) — T(Lg) — T(f{\“) factors through the norm

map Npyr1y: T(R) — T(V[L]), so the image of T(V[21]) is dense in U, that is U < T(V[1]). O

a a

Subsequently, we approximate the K “-points of a maximal torus of G, by using V[é]—points.

Lemma 3.17. Consider the setup §5.12. For a reductive V-group scheme G, the closure G(V[X]) of the
image of G(V[%]) — G(f(\“), a maximal torus T' of G, with minimal splitting field Lo, and

the image U = N

the norm map N z.: T(Lo) — T(f(\a),

o/ (T'(Lo)) is an a-adically open subgroup of T(f(\“) and is contained in G(V[1]).

Proof. The a-adically open aspect of the assertion follows from Lemma 3.16 (ii) because the arguments

there, by base change, apply to all Ktori as well. The proof for U c G(V[%]) proceeds as follows.

(1)

Since K° is Henselian, by a criterion for openness Lemma 3.6 (i), the following map from (3.9.1)
o: G(f{\a) — M(G)(f(\“), g— gTg~! is a-adically open.

Consequently, ¢ sends every a-adically open neighborhood W of id € G (f(\ *) to an a-adically open
neighborhood of T. The density Lemma 3.15 of Tor(G)(V[%]) in Tor(G)(K") implies that

a

$(W) A Im(Tor(G)(V[2]) — Tor(G)(K™)) # @.

a

Hence, there are a torus 7" € Tor(G)(V[1]) and a g € W such that gTg~" = Tfka € p(W).

For any u € U, the map o,: G(K*) — G(K*) defined by g — g 'ug is continuous. Let
W := o, }(U). By the construction in (i), there are a w € W and a torus 17" € Tor(G)(V[2])
such that wTw™! = T%,. Note that u € wUw™! = YNp, R (T(Lo))y~!, which by transport
of structure, is equal to N, =, (Tll?a (Lp)). By Lemma 3.16, the last term is contained in

Im(T"(V[]) - T'(K")), so is contained in G(V[1]). O

a

Corollary 3.18. Consider the setup §5.12 and a reductive V-group scheme G, we have

m (Tor(G) () — Tox(G)(R*)) < Im(Tox(G)(V) — Tor(G)(K")).

More precisely, for every maximal torus T of G, and every a-adically open neighborhood W of id € G(f(\“),
there exist a maximal torus Ty of G and a g€ W such that (Ty) 7. = ngugfl.
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Proof. By the argument (i) for Lemma 3.17, ¢(W) A Tor(G)(V*) is an a-adically open neighborhood of
Tz, € Tor(G)(K"). Since V ~ VI x %, V* (Proposition A.10 (vii)) and Tor(G) is affine, we get

Tor(G) (V) > Tor(G)(VIE]) gy ey Tor(G)(P2).
By Lemma 3.15, the image of Tor(G)(V[1]) — Tor(G)(K*) is a-adically dense, so we have
$(W) A Tor(G)(V*") ~ Tm(Tox(G)(V[L]) # @,
giving a maximal torus Ty € Tor(G)(V) and g € W such that (To)z. = 9Tz.9~ ' € ¢(W). O

Next, we prove Proposition 3.19 by constructing an open subgroup in the closure of G(V [ ]). By lumping
together the approximations in toral cases (Lemma 3.17), the resulting open subgroup is normal. This
normality is crucial for the dynamic argument for root groups for the product formula Proposition 4.5.

Proposition 3.19. Consider the setup §5.12. For a reductive V-group scheme G, the closure G(V[1])
of the image of G(V[%]) — G(f(\“) contains an a-adically open normal subgroup N of G(f(\“).

Proof. In the proof, all open subsets without the word ‘Zariski’ refer to a-adically open subsets.

(i) Fix a maximal torus 7' < G'z,. We denote by g the Lie algebra of Gz, and by b the Lie algebra
of T'. For each g € G, and the subspace g* 2d(9) = g fixed by ad(g), by [SGA 3y, XIII, 2.6 b)],
dim g#49) > dim 7. Let reqular locus G™® < Gz, be the subscheme of all g € G, that satisfy
dim(g*49)) = dim T. By [SGA 3y, XIII, 2.7], G*# is Zariski open. By the following equation

dim(g**?) = dim(p**@)) + dim((g/h)***),

an element ¢ € T' is regular in G, (namely, t € 7™ := G™& ~ T) if and only if (g/h)*4*) = 0.

(i) Recall Ly and the open subgroup U < T(K*) in Lemma 3.17, we claim that U n T%°8(K*) # (.
Consider the norm map Nm: ResLO/f{a (TL,) — T. Note that T, ~ Gm’LO is isomorphic to a

Zariski dense open subset of A’zo, so Res Lo/Re (TL,) is also a Zariski dense open subset of A%‘f for
= [Lo : K*]. The field K* is infinite, so we have (ResLO/f{\a (TLO))(f(\”) A Nm ™~ (Tre8)(K*) #
. Applying Nm to this nonempty intersection, we proved our claim that U n T*8( K*) # .

(iii) For a fixed to € U n Trcg( “), by (i), we have (g/h)24(*0) = 0. So [SGA 3y;, XIII, 2.2] implies that
fiGraxT—Gray  (9,1) > gtg™"

is smooth at (id, tg). Thus, there is a Zariski open neighborhood W of (id, to) such that f|w: W —
G, is smooth. By Lemma 3.6 (i), W(EK*) > G(K*) is open. Thus the open neighborhood
W o= W(K") n (G(f(\“) x U) of (id,to) has open image under fiop. The Gz, -translations
Th: (g,t) — (hg,t) for h € Gz, induce automorphisms of Gz, x T', so f is also smooth at (h, o).
Similar to above, all G( K K ) translations of W’ have open images under fio,. So, there is an
open subset Uy < U such that F := f(G(f{\“) x Up) is open. Let N be the subgroup of G(f{\“)
generated by E. The openness of F implies that N is an open subgroup of G(f(\ ).

Kea

(iv) As E is stable under G(f(\“) -conjugation, NN is normal in G(f(\“). For each g € G(f(\“), we denote
T9 := gTg~"'. Then U9 := /KQ( 9(Lo)) satisfies U9 = gUg™ 1. Lemma 3.17 applies to 79 and

gives U9 < G(V[1]). Thus E < |J U < G(V[L]) [1]). Since E generates N, we obtain

gEG(K“

N < G(V[L)]. O

Corollary 3.20. With the notations in Proposition 3.19, G(V[L]) is an open subgroup of G(K K*) and
GVIZD) - G(V) = Im(G(V[Z]) = G(R™) - G(V™),

Proof. The image of G(V[1]) — G(EK") is a subgroup of G(K*), hence so is its closure G(V[1]). Since
G(V[Li]) contains the open subset N, it is an open subgroup of G(K"). Recall Example 3.14 that the

subgroup G( < G(K ) is open and closed. By Lemma 3.7, the desired equation follows. O
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4. PASSAGE TO THE HENSELIAN RANK ONE CASE: PATCHING BY A PRODUCT FORMULA

The aim of this section is to reduce Theorem 1.3 to the case when V' is a Henselian valuation ring of rank
one. The key of our reduction Proposition 4.7 is the product formula Proposition 4.5 for patching torsors:

G(K") =Im(G(V[L]) - G(K")) - G(V").
To show this product formula, we use the Harder-type weak approximation Proposition 3.19.
First, we recall a criterion for anisotropicity [SGA 3111 new, XX VI, 6.14], which is practically useful.

Lemma 4.1. A reductive group scheme G over a semilocal connected scheme S is anisotropic if and
only if G has no proper parabolic subgroup and rad(G) contains no copy of Gy, s.

Precisely, to determine whether G is anisotropic, we consider the functor parametrizing parabolic subgroups
Par(G): Sch‘/jg — Set, S" +— {parabolic subgroups of Gg},

which is representable by a smooth projective S-scheme (see [SGA 3111 now, XX VI, 3.5])1. Note that G is
also an element in Par(G)(S); we denote this non-proper parabolic subgroup by * € Par(G)(.9).

Recall A.8 and §A.11 that a valued field K is nonarchimedean 1f its valuation ring V has a height-one
prime ideal p;. The completion K equals the a-adic completion K* of K foran a e p1\{0}.
Lemma 4.2. For a Henselian nonarchimedean val’zied field K with its completions I/(\', a reductive V -group
scheme G, and the valuation topology on Par(G)(K) induced from K,

(i) the image of Par(G)(K) — Par(G)(K) is dense;

(i) let V < K and V < K be the valuation rings, if Par(G)(V) # {x}, then Par(G)(V) # {x}.

Proof. The assertion (i) follows from Lemma 3.5 (iv). If Par(G)(V) # {*}, then the valuative criterion for
the separatedness of Par(G) implies that Par(G)(K) contains an x # =. By Lemma 3.5 (ii), Par(G)(K) is
Hausdorff so x has an open neighborhood U, that excludes #. The density of the image of Par(G)(K) —
Par(G) (I?) shown in (i) yields an y € Par(G)(K) whose image is contained in U,. Therefore, y # * and
Par(G)(K) # {+}. By the valuative criterion for the properness of Par(G) over V, we conclude. O

The following Proposition 4.3 generalizes [Pra82, Theorem (BTR)| to valuation rings of higher rank. For
a reductive group scheme H over a scheme S, the S-split rank of G is the largest k such that ij%s c@.
In particular, for any S-scheme S’, the Hg is anisotropic if and only if it has zero S’-split rank.
Proposition 4.3. Let G be a reductive group scheme over a valuation ring V. with fraction field K.

(a) A parabolic subgroup P — G is minimal if and only if the parabolic subgroup Px < G is minimal.

(b) The V-split rank of G equals the K -split rank of Gk .

(¢) If K is Henselian nonarchimedean, then for the completion 1 of V and a minimal parabolic
subgroup P < G, the base change Py is a minimal parabolic subgroup of Gy .

(d) If K is Henselian nonarchimedean, then for the completion 1% of V,
the V -split rank of G equals the IA/—split rank of Gy, .

(e) If K is Henselian and V # K, then G is anisotropic if and only if G(V) = G(K).
Proof.

For the formation of Par(G), the base scheme S does not have to be connected.
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(a) If Pk is minimal, then any minimal parabolic subgroup @ of G contained in P satisfies Qi = Pk.
The valuative criterion for the separatedness of Par(G) over V implies that @ = P, so P is
minimal. Now, we assume that P < G is minimal. If there is a minimal parabolic subgroup @
of Gk contained in Pk, then the valuative criterion for the properness of Par(G) lifts @ to a
parabolic @ c G, which must be minimal. Then, by [SGA 3111 new, XXVI, 5.7 (ii)], two minimal
parabolics @ and P are conjugated by an element of G(V'), which forces that Px = @ is minimal.

(b) When G is a V-torus, we note that Lemma 2.2 suffices. In the general case, we reduce to this
case of tori. Let L be a Levi subgroup of a minimal parabolic P < G and denote by rad(L)split
the maximal V-split subtorus of rad(L). By [SGA 3111 new, XXVI, 6.16], the V-split rank of G is
equal to dim(rad(L)spiit). By (a), Pk is still a minimal parabolic subgroup of Gk thereby op. cit.
applies: the K-split rank of G is equal to dim(rad(Lk )spiit). So we are reduced to the known toral
case ([SGA 3111 new, XXII, 4.3.6]) dim(rad(L)spit) = dim((rad(L) k )spiit) for the V-torus rad(L).

(c) Let L be a Levi subgroup of P, then Ly is a Levi subgroup of Pp. By [SGA 3111 new, XX VI, 1.20],

the set Par(L)(V) is the set of parabolics of G that are contained in Pp and Par(L)(V) is the
set of parabolics of G that are contained in P. Hence, we conclude by Lemma 4.2 (ii).

(d) For a Levi subgroup L of a minimal parabolic subgroup P of G, by (c), Ly is a Levi subgroup of
the minimal parabolic subgroup Pp of G,. Therefore, a similar argument in (b) reduces us to
the case when G is a V-torus T'. Taking the quotient of T by its maximal split subtorus Ty, we
may assume that 7" is anisotropic. Consider the following functor ([SGA 3j1, X, 5.6])

X*(T): Sch?‘l; — Set, R — Homp g (Tr, G R),

which is representable by an étale locally constant group scheme. Since T is isotrivial (Lemma 2.3),
by [SGA 3111 new, XXVI, 6.6], the property X*(T')(R) # 0 is equivalent to that T’z contains a copy of
G, g If X*(T)(V) # 0, then by Proposition A.10 (vi), the sets X*(T)(V /my) = X*(T)(V /my)
contain nonzero elements. Since V is Henselian and X*(T) is V-smooth, we have the surjection

X*(T)(V) - X*(T)(V/my) # 0.

Thus T contains a copy of G, v, which is in contradiction to the anisotropic assumption on 7.

A~

This contradiction shows that X*(7)(V') = 0, namely, T}, is also anisotropic, hence we conclude.

(e) If we have G(K) = G(V), then it is impossible for G to contain a G, v because K* = G, (K) c
G(K) strictly contains V* = G,,(V) < G(V). Therefore, G is anisotropic. Now assume that
G is anisotropic and we show that G(K) = G(V). By [BM21, 2.22], V is a filtered direct
union of valuation subrings V; of finite rank, such that each V; — V is a local ring map. By
[EGA TV, 18.6.14 (ii)], V is a filtered direct union of Henselian valuation subrings V}* of finite
rank. Similarly, K is a filtered direct union of K := Frac(V;?). Since G is finitely presented
over V, there is an index iy and an affine group scheme G;, smooth and finitely presented
([Nag66, Thm. 37]) over V! such that G;, xv, V =~ G. Further, by [Conl4, 3.1.11], G;, and hence
(Gi)isi, are reductive group schemes. It is clear that all (G;);>;, are anisotropic. By a limit
argument [SP, 01ZC], we have G(V) = lim, G(V") and G(K) = lim, G(K!). Subsequently,
it remains to prove the case when V' is Henselian of finite rank n.

First, we prove the case when V is of rank one. For a € my/\{0}, we form the a-adic completion 7
of V with K* := Frac V. By (d), Gy. is anisotropic. For the nonarchimedean complete valued
field K, by [Macl7, Thm. 1.1], G(f/\“) is a maximal bounded” subgroup of G(f(\“). On the other
hand, a result of Bruhat-Tits—Rousseau [Rou77, Thm. 5.2.3] (or [BTyy, p. 156, Rem.]) shows that
G(K*") is bounded. Consequently, we have G(V*) = G(K*®). The rank-one assumption ensures
that V < ¥ is injective ([FK18, Ch. 0, Thm. 9.1.1 (2)]), so the map G(V) — G(‘//\“) is injective.
The equality V = K xz, e (Proposition A.10 (vii)) and the affineness of G yield a bijection

P

G(V) > G(K) X g ey C(T) = G(K).

ZRecall from [BT1r, 1.7.3 f) or 4.2.19] (¢f. [BLRY0, Ch. 1, Def. 2]) that for a valued field (K,v) and a K-scheme
X, a subset P ¢ X(K) is bounded, if for all f € K[X], we have infzepv(f(z)) > —o0. For instance, the subset

Z, c Q, is bounded because v(Zy) = 0; the subset {p~"},>1 is not bounded because v(p~™) = —n tends to —0.
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When V is of rank n > 1, we assume the assertion holds for the case of rank < n — 1 and prove
by induction. For the prime p < V of height n — 1, by Proposition A.2 (vii), the localization V;,
and the quotient V/p are Henselian valuation rings. Due to Proposition A.10 (iv), the rank of
V/p is one and the rank of V}, is n — 1. Since V is Henselian, sections of Par(G) and X*(rad(Q))
over V/my lift over V. Hence, Gy /m, is anisotropic and so is Gy,. As G is anisotropic, by (b),
so are Gk and Gy, . By the settled rank-one case and the induction hypothesis, we have

G(V/p)=G(V,/pV,) and  G(V,) = G(K). (4.3.1)

The affineness of G and the isomorphism V — V, XV, /pVs V' /p lead to the isomorphism
G(V) — G(Vy) xaw,/pvy) G(V/p). (4.3.2)
Therefore, the combination of (4.3.2) and (4.3.1) gives us the desired equation G(V) = G(K). O

The following lemma provides the version for tori of the product formula.

Lemma 4.4. For a valuation ring V' of rank n > 0, the prime p < V of height n — 1, an element
a € my \p, the a-adic completion V* with K* := Frac V*, and a V-torus T, we have the product formula

Py Py

T(K") = m(T(V[L]) > T(K") - T(V").

Proof. The left-hand side contains the right-hand side, so it remains to show that every element of T(f(\ “)
is a product of elements of Im(T'(V[L1]) — T(f(\a)) and T(V*). Consider the commutative diagram

0 ——>T(V) —> T(V[;]) —> Hy )y (V;T) —— H'(V,T) — H"(V[}].T)

| I | |

|
0 —> T(V?) — T(VP[2]) > Hyu ), (V" T) — HY (VM T) — H'(VI[L],T)

J | }

) — H‘A/a/(a)(V“,T) —> Hl(‘//\a,T) —> Hl(f(\a,T),

where V! is the Henselization of V and the rows are exact sequences of local cohomology [SGA 4y, V,
6.5.3]. By [SP, OFOL], V" is also the a-Henselization of V, hence the a-adic completion of V" is e (see
[FK18, 0, 7.3.5]). By the tori case Proposition 2.7, the three horizontal morphisms in the two rightmost
squares are injective. The excision [Mil80, 11T, 1.28] combined with a limit argument yield an isomorphism
HY, /(a)(V, T) =~ H{, /(a)(Vh, T). Therefore, a diagram chase gives the following decomposition
T(VPZ]) =Im (T(V[Z]) — T(V'(Z]) - T(V"). (4.4.1)

a

By [B(C22, 2.2.17], the image of T(V"[1]) — T(K*") is dense. The openness of T(V*) « T(K*) provided
by Lemma 3.5 (iii), and Lemma 3.7 imply that

I (T(VE[L]) - T(K")) - T(V") = Im(T(VR[]) > T(K")) - (V") = T(K"). (4.4.2)

Combining (4.4.1) and (4.4.2), we obtain the product formula for the case of tori. d

Proposition 4.5. For a valuation ring V' of rank n > 0, the prime p <V of height n — 1, an element
a € my\p, the a-adic completion V* of V with K* := Frac V", a reductive V-group scheme G, the
subgroup G(V*) « G(K*) and the image Im(G(V[2])) of the map G(V[L]) — G(K*), we have

2N

G(K*) =1Im (G(V[1])) - G(V"™).
Proof. The right-hand side is contained in the left-hand side, so it remains to show that every element of

G(K*) is a product of elements of Im (G(V[L])) and G(V*). The proof is divided into two cases.

Case 1: without proper parabolic subgroups
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The case when Gy, is anisotropic follows from Proposition 4.3 (e). If G, contains no proper parabolic

subgroup and rad(G .) contains a nontrivial split torus of Gya, We con51der the commutative diagram

2N 2N 2

0 —— 1ad(G) (V") —— G(7") —— (G/rad(G))(V") —— HY(T*,1ad(G))

| | | I

0 — rad(G)(K*) — G(K*) — (G/rad(G))(K*) —— H'(K*,rad(G))

with exact rows, where the equality follows from Lemma 4.1 and Proposition 4.3 (¢). Since rad(Gyp.,) is

a torus, by Proposition 2.7, the last vertical arrow is injective. Thus, a diagram chase gives G(f(\ Y) =
rad(G)(K") - G(V*) so the product formula for rad(G) (Lemma 4.4) leads to the assertion.

Case 2: with a proper parabolic subgroup

By Lemma 4.1, the remaining case is when Gy, contains a proper parabolic subgroup. For a minimal
parabolic subgroup P of Gy, denote its umpotent radical by U := rad"(P). As exhibited in [SGA 3111 new,
XXVI, 6.11], the centralizer of a maximal split torus 7' < P in G, is a Levi subgroup L of P. By ibid.,
2.4 ff., there is a maximal torus T < Go. containing 7. The proof proceeds as the following steps.

Step 1: for the mazimal split subtorus T of P, we have T(KQ) c Im(G(V[1]) ~G( ‘//\“) The base change

@ T 1A 2N
T := TAG is a maximal torus of Gz,. For T we apply Corollary 3.18 to W := Im(G(V[L]) n G(V"), so
there are a g € W and a maxunal torus Ty < G such that (7o) z. = ng L. The product formula for tori
(Lemma 4.4) shows that To( K*) = Im M) -1 To(V*). Hence we get

(To
F(R") = g To(R*)g = g~ m (To(VILD) - To(P)g < g '1m (GOVIED) - G(P)g. (452)
Since g € Im (G(V[L])) n G(V*), (4.5.2) implies that T(K*) < m (G(V[L]) - G(V"). Note that

) I
Corollary 3.20 gives us W G(V*) =Im(G(V[21])) - G(V*"). Consequently, we get
T(R*) c T(K*) = T(K") < Im (G(V[])) - G(V™). (4.5.3)
Step 2: we prove that U(f(\"') c W The maximal split torus T acts on Gy, via the map
T x Gy — Gpay  (t,g) = tgt™",

inducing a weight decomposition Lie(G.) = @ e+ () Lie(Gypa)®, where X*(T)) is the character lattice
of T. The subset ® = X*(T') — {0} such that Lie(G.)* # 0 is the relative root system of (G.,T). By
[SGA 3111 new, XXVI, 6.1; 7.4], Lie(L) is the zero-weight space of Lie(G,) and the set @, of positive

roots fits into the decomposition
Lie(P) = Lie(L) ® (D yeq, Lie(Gpa)®) with  Lie(U) = @ e, Lie(Gpa)™

Let IN(/f(\“ be a Galois field extension splitting G.. By ibid., 2.4 ff., there is a split maximal torus
T'c Lic f’f( of G containing T%. The centralizer of 7" in G is itself, which is also a Levi subgroup
of a Borel K-subgroup B c Pg. The adjoint action of 7" on G induces a decomposition Lie(G%)
Daexry Lie(Gx)®, whose coarsening is the base change of Lie(Gy.) = @ e xx () Lie(Gya)® over K.
For the root system ®" with the positive set ®’, for the Borel B, ibid., 7.12 gives us a surjective map
n: X*(T") - X*(T) such that ®, < n(®’,) < &, U {0}. By ibid., 1.12, we have a decomposition

Ug = llacor U or Lie(Up) = @oeor Lie(G),

where ®” = @, and we have isomorphisms f,: Uz , «<— G_ 7. Since Lie(L) < Lie(Gy.) is the zero-

K a a,K
weight space for the T-action, the restriction to T of weights in Lie(Uz) must be nonzero, that is
n(®”") < ®,. For a cocharacter &: G,,, — T, the dual map n*: X,.(T) — X.(T") of n sends & to a

cocharacter n*(§) € X4(1") of Tz. The adjoint action of G, on U induced by & is denoted by

ad: G (K*) x U(K*) > U(K"),  (t,u) — E(t)ué(t)~"
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For the open normal subgroup N < G(f(\ ) constructed in Proposition 3.19, the intersection N n U (f(\ “)
is open in U(K*"), nonempty and stable under T'( K*)-action. We consider the commutative diagram

G (R*) x (N n U(R) 22995 1(R) x (N n U(RY) —2L > N A (R
. l . f x id “Sa l a ad i/\a
Gm(K*) xU(K") —————> T(K") x U(K") U(K")

& xid ~ ~ ad ~

G (K) x U(K) T(K) x U(K)

Let @ be a topologically nilpotent unit (A.6) of K. For an integer m, the action of @™ on u € U(f{\“) is
denoted by (w™) - u. Let % be the image of u in U(K). Since & = [ [ .o fa(9a) With g, € K, the image
of (™) - win U(K) is (n*(€)(@™)) & (n*(€)(w™)) ", expressed as the following

[Tacor (1(€)(@™) falga) (1" (@™) ™" = [acon fa (@™ O0g,) = Trcqn fa (@) E10g,).

Because n(®”) < @, we can choose a cocharacter £ such that (£, n(«)) are strictly positive for all o € ®”.
Then, when m increases, the element (w™) - u € U(K) a-adically converges to the identity, and so the
same holds in U (f(\ *). Thus, since N n U(f(\ ) is an open neighborhood of identity, every orbit of the
T(f{\“)—action on U(f(\“) intersects with IV n U(f(\“) nontrivially. So, we have U(ff\“) = UteT(gQ) t(N n
U(K*)t=* = N n U(K*), which implies that U(K") « N. By combining with Proposition 3.19, we get

U(K*) < Im (G(V[L])). (4.5.4)

Step 3: we have P(K®) < Im (G(V[2])-G( V). By Proposition 4.3 (¢), the quotient H := L/T satisfies

a

H (f(\ “VY=H (\//\“) Since T is split, Hilbert’s theorem 90 gives the vanishing in the commutative diagram

P

0——T7(V*) — L(V*) — H(V*) —— HY(V",T) =0

H l (4.5.5)
“) —— H(K*) — HY (K", T)=0

T

0 — T(K*) — L(

with exact rows. A diagram chase yields L(K*) = T(K®) - L(V*"). Combining this with (4.5.3) and
(4.5.4), by Corollary 3.20, we conclude that

2N
a

P(K*) cIm (G(V[L]) - G(V™). (4.5.6)
Step 4: the end of the proof. By [SGA 3111 new, XX VI, 4.3.2, 5.2], there is a parabolic subgroup @ of G
such that P n @ = L fitting into the surjection

rad"(P)(K*) - rad*(Q)(K*) — G(K*)/P(K*). (4.5.7)
Applying (4.5.4) to (4.5.7) for U and rad®(Q) gives G(K*) < Im(G(V[2])) . P(K*), which combined with
(4.5.6) yields G(K*) < Im(G(V[L])) - G(V*). With the equality Im(G(V[1])) - G(V*) = Im(G(V[L])) -
G(V*) verified in Corollary 3.20, the desired product formula G(K*) = Im(G(V[]))-G(V*) follows. O

a

The following corollary of independent interest shows that torsors under reductive group schemes satisfy
arc-patching (see [BM21]), where the arc-cover of Spec V' is of the form SpecV /p L Spec V},.

Corollary 4.6. For a valuation ring V' of rank n = 1, the prime p <V of height n — 1, and a reductive
V-group scheme G, the following map

Im(G(V,) = G(k(p))) - Im(G(V/p) — G(k(p))) - G(Vy/p) s surjective.
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Proof. By a limit argument ([SP, 01ZC], [BM21, 2.22]), we may assume that V contains an element a
cutting out the height-one prime ideal of V//p. Note that V[+] =V} and the a-adic completion of V' /p is

V7*. The affineness of G and Proposition A.10 (vil) V/p = Vo /P X e 17 7* give us the isomorphism

P

GV /) > GVa/p) X a9y G(TY).

By Proposition 4.5, the image of G(V;) x G(V/p) in G(Frac V) generates G(Vy/p). O
Proposition 4.7. For Theorem 1.3, proving that { has trivial kernel for rank one Henselian V' suffices.

Proof. A twisting technique [Gir71, III, 2.6.1(1)] reduces us to showing that the map <) has trivial kernel.
The valuation ring V' is a filtered direct union of valuation subrings V; of finite rank (see, for instance,
[BM21, 2.22]). Since direct limits commute with localizations, the fraction field K = Frac(V) is also a
filtered direct union of K; := Frac(V;). A limit argument [Gir71, VII, 2.1.6] gives compatible isomorphisms
Hi(V,G) = lim,_, HY(V;, G) and Hi (K, G) = lim__, Hgt(KZ,G) Thus, it suffices to prove that ¢ has
trivial kernel for V' of finite rank, say n = 0. When n = 0, the valuation ring V' = K is a field, so this case
is trivial. Our induction hypothesis is to assume that Theorem 1.3 holds for two kinds of valuation rings
V': (1) for V' Henselian of rank one; (2) for V' of rank n — 1. Indeed, (1) is only used for the case n = 1.

Let X be a G-torsor lying in the kernel of HZ (V,G) — Hj (K, G). For the prime p < V of height n — 1,
we choose an element a € my \p and consider the a-adic completion V7 of V with fraction field K°. The
induction hypothesis gives the triviality of X’ \V 17 hence a section s; € X (V[a]) Consequently, X is

trivial over K° and by induction hypothesis again, trivial over V* with s, € X (‘//\ ). By the product
formula G(K") = Im(G(V[1]) -G(V*) in Proposition 4.5, there are g; € G(V [1]) and g2 € G(V*) such
that g151 and goso have the same image in X(f(\“). Since X is affine over V', by Proposition A.10 (vii),
we have X(V) ~ X (V[1]) X x (R X(\//\“), which is nonempty, so the triviality of A" follows. O

a

5. PASSAGE TO THE SEMISIMPLE ANISOTROPIC CASE

After the passage to the Henselian rank-one case Proposition 4.7, in this section, we further reduce
Theorem 1.3 to the case when G is semisimple anisotropic, see Proposition 5.1. For this, by induction on
Levi subgroups, we reduce to the case when G contains no proper parabolic subgroups. Subsequently,
we consider the semisimple quotient of G, which is semisimple anisotropic. By using the integrality of
rational points of anisotropic groups and a diagram chase, we obtain the desired reduction.

Proposition 5.1. To prove Theorem 1.3, it suffices to show that { has trivial kernel in the case when
V' is a Henselian valuation ring of rank one and G is semisimple anisotropic.

Proof. First, we reduce to the case when G contains no proper parabolics. If G contains a proper minimal
parabolic P with Levi L and unipotent radical rad"(P), then we consider the commutative diagram

Hg (V. L) ——> Hg(V, P) —> Hg (V. G)

A

Hg (K, L) — Hg (K, P) — Hy (K, G).

By [SGA 3111 new, XXVI, 2.3], the left horizontal arrows are bijective. If a G-torsor X lies in ker(lg),
then it satisfies X (K) # . By ibid., 3.3; 3.20, the fpqc quotient X /P is representable by a scheme
which is projective over V. The valuative criterion of properness gives (X/P)(V) = (X/P)(K) # &, so
we can form a fiber product Y := X x x/p SpecV from a V-point of X'/P. Since Y(K) # (J, the class
[V] € ker(Ip). On the other hand, the image of [V] in H},(V,G) coincides with [X]. Consequently, the
triviality of ker(l7,) amounts to the triviality of ker(lg). By ibid., 1.20 and Proposition 4.7, we are reduced
to proving Theorem 1.3 where V' is Henselian of rank one and G has no proper parabolic subgroup, more
precisely, to showing that ker(H(V,G) — H'(K,G)) = {*} for such V and G.
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For the radical rad(G) of G, the quotient G/rad(G) is V-anisotropic, and by Proposition 4.3, satisfies
(G/rad(G))(V) = (G/ rad(G))(K ), fitting into the following commutative diagram with exact rows

(G/rad(@))(V)

Hg (V,rad(G)) —— Hg(V,G) —> Hy (V. G/rad(G))
l 1(rad(G)) l UG) l 1(G/rad(G))
(G/rad (@) (K) —— HL(K,1ad(G)) —> H}(K,G) — HA(K,G/rad(G)).

If ker(I(G/rad(@))) is trivial, then by the case of tori Proposition 2.7 and Four Lemma, we conclude. [

6. PROOF OF THE MAIN THEOREM

In this section, we finish the proof of our main result Theorem 1.3. By the reduction of Proposition 5.1, it
suffices to deal with semisimple anisotropic group schemes over Henselian valuation rings of rank one. In
this situation, we argue by using techniques in Bruhat—Tits theory and Galois cohomology to conclude.

Theorem 6.1. For a Henselian rank-one valuation ring V' and a semisimple anisotropic V -group G,
ker(H% (V,G) — HY (FracV,G)) = {}.

Proof. Denote K := FracV and let V be a strict Henselization of V at my with fraction field K as a
subfield of a separable closure K*P. For the three Galois groups I' := Gal(V/V), I'zz := Gal(K*?/K)
and T'x := Gal(K*°P/K), since I' ~ Gal(K/K), we have I'k/T'% ~T. An application of the Cartan-Leray
spectral sequence yields an isomorphism HA(V,G) ~ HY(T,G(V)). By [SGA 4y, VIII, 2.1], we have
H} (K,G) ~ H (', G(K*P)). With these bijections, the composite of the following maps « and j3

HYT,G(V)) & H\(T,G(K)) 5 H' (T, G(K*P))
corresponds to the map H, &(V,G) - H} (K, G). Hence it suffices to show that o and 3 have trivial kernels.
For 8: HY(I',G(K)) — H'(I'k, G(K*°P)), invoke the inflation-restriction exact sequence [Ser02, 5.8 a)]
0 — HY(G1/Ga, A®?) — H'(G1, A) > H' (G4, A)F/G2,
for which G» is a closed normal subgroup of a group G; and A is a Gi-group. It suffices to take
Gy =Tk, Gy =T, and A := G(K*P).
For a: H{(T',G(V)) —» HY(T', G(K)), let z € H'(T,G(V)) be a cocycle in ker o, which signifies that
there is an h € G(K) such that for every s € T, 2(s) = h='s(h) € G(V). (6.1.1)

Now we come to Bruhat-Tits theory and consider G(V) and hG(V)h™! as two subgroups of G(K).
Let Lfﬁv(G) denote the building of G. Since G is semisimple, the extended building :ﬁv(G)eXt =
ﬂG) (HomK ar. (G,(Gmf)v ®z R) has trivial vectorial part and equals to jv(G) The elements of
G(K) act on the building jV(G) For each facet F' ¢ jJ(G), we consider its stabilizer PIL and its connected
pointwise stabilizer P%. In fact, there are group schemes (’5} and &% over V such that (’5}(‘7) = P;; and
®0.(V) = PY, see [BTy;, 4.6.28]. Note that the residue field of V is separably closed and the closed fiber
of G is reductive, so, by [BT1r, 4.6.22, 4.6.31], there is a special point 2 in the building ﬂG) such that
the Chevalley group Gy is the stabilizer &1 = &Y of 2 with connected fibers. By definition [B Ty, 5.2.6],
G(‘N/) is a parahoric subgroup of G(IN( ). Therefore, its conjugate hG(‘N/)h_1 is also a parahoric subgroup
P)_, .. Since G(V) is I-invariant, every s € I' acts on hG(V)h ™! as follows

s(hG(V)h™Y) = s(h)G(V)s(h~) &2 hG/(V)h~

The T-invariance of G(V) and hG(V)h~" amounts to that z and h - x are two fixed points of T' in (?(G)

But by [BTyj, 5.2.7], the anisotropicity of Gk gives the uniqueness of fixed points in <7(G) Thus, we

have G(V) = hG(V)h~!, which means that for every g € G(V) its conjugate hgh™! fixes x. This is

equivalent to that g fixes h=! - x and to the inclusion of stabilizers P] — PZ,L_T. On the other hand,

every T € P}I_La: satisfies hth™ - 2 = z, so hth~* € P} = G(V). Since h normalizes G(V'), this inclusion

implies that 7 € G(V) and P,I,l_w  G(V). Combined with P} ¢ P;i,l_w, this gives P] = P,;r,l_z = G(V).
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Therefore, the stabilizer P,I,l‘x is also a parahoric subgroup and equals to P}?_l'w. By [BTyy, 4.6.29], the

equality P? = P,?,l_w implies that h™! -2 = 2, so he PY = G(‘N/), which gives the triviality of z. O

7. TORSORS OVER V((t)) AND NISNEVICH’S PURITY CONJECTURE

In [Nis89, 1.3], Nisnevich proposed a conjecture that for a reductive group scheme G over a regular local
ring R with a regular parameter f € mR\m%{7 every Zariski-locally trivial G-torsor over R[%] is trivial:

Hy, (R[7],G) = {}.

Recently, Fedorov proved this conjecture when R is semilocal regular defined over an infinite field and
G is strongly locally isotropic (that is, each factor in the decomposition of G®¢ into Weil restrictions of
simple groups is Zariski-locally isotropic); he also showed that the isotropicity is necessary, see [Fed21].

In this section, we prove a variant of Nisnevich’s purity conjecture when R is a formal power series V[t]
over a valuation ring V', see Corollary 7.6. For this, we devise a cohomological property Proposition 7.5
of V((t)) by taking advantage of techniques of reflexive sheaves.

7.1. Coherentness and reflexive sheaves. A scheme with coherent structure sheaf is locally coherent;
a quasi-compact quasi-separated locally coherent scheme is coherent. For a valuation ring V' with spectrum
S, by [GR18, 9.1.27], every essentially finitely presented affine S-scheme is coherent. For a locally coherent
scheme X and an Ox-module .%, we define the dual Ox-module of F#

FV = SHome, (F,Ox).

We say that % is reflexive, if it is coherent and the map % — %Y is an isomorphism. A coherent
sheaf ¢ has a presentation Zariski-locally ﬁ%m — ﬁ%n — ¢ — 0, whose dual is the exact sequence
0— G — 0" — OP™ exhibiting 4" as the kernel of maps between coherent sheaves, hence by
[SP, 01BY] ¢V is coherent, a priori finitely presented. If Z is reflexive at a point z € X, then the dual of
a presentation ﬁ%f’;/ - @’)@Tg — Z — 0is a left exact sequence 0 — F, — ﬁ%g - ﬁg‘?ﬁl.

Lemma 7.2 (reflexive hull). Let X be an integral locally coherent scheme and let F be a coherent
Ox-module, then FV and FVV are reflexive Ox-modules.

Proof. 1t suffices to show that .#V is reflexive. As % is coherent, choose a finite presentation ﬁ%m —
ﬁ)e?” — F — 0, take its dual and its triple dual, we have the commutative diagram with exact rows

0 Tv L o9 oo
PN oo,

Our goal is to show that the left most vertical arrow is an isomorphism. Since the other vertical arrows
are isomorphisms, a diagram chase reduces us to showing that u" is injective. Consider the dual of u

uY ﬁ)@(n — FVV
and its tensor product with the function field K of X, we get the following exact sequence
K% - 7V ®p, K — coker(u" ) — 0.

As 7 is finitely presented, by [SP, 0583], we have .# V¥ ®¢, K ~ Homg (F " Q¢ K, K) and we view K"
as Hom (K®", K). Note that u®¢, K: ¥ Qg K — KO is injective (since u is injective), we find that
coker(u") g = 0, that is, coker(u") is a torsion &x-module. This implies that #omg, (coker(u“), Ox) =

0, so we take dual of the exact sequence ﬁ)@?" Y FV S coker(u“) — 0 to get the injectivity of uw¥v. O

Lemma 7.3 ([GRI18, 11.4.1]). For a valuation ring V with spectrum S, a flat finitely presented morphism
of schemes f: X — S, a coherent Ox-sheaf %, a point x € X such that the fiber of f containing x is
regular, and the integer n := dim Of-1(y(2)).z

(i) if F is f-flat at x, then proj.dimg,  F, <n;

(ii) we have proj.dim, ., <n+1; and
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(iii) of F is reflexive at x, then proj.dim, .7, < max(0,n — 1).

Proof.

(i) Since Ox is coherent and ., is finitely presented, there is free resolution of %, by finite modules
=Py — P —» Py — %, — 0.
It suffices to show that L := Im(P, — P,,_1) is free. Now we have the following exact sequence
0O-L—->P, 1> —>P —>P— %, —0.
Denote y = f(x). Since .#, and ker(P; — P,_1) are f-flat for 1 < ¢ < n—1, the following sequence
0= L®ox, Oj1iy)e = = Po®ox, Op-1(y) 0 = Fo ®ox. Op-1(y)0 = 0

is exact. Denote y := f(x). For the maximal ideal m, of &4-1(,) , at x and the residue field k(x)
of  in Ox ., we note that L®g (ﬁf—l(y)7m/mwﬁf—l(y)7$) = L®py., k(x). For a free basis (e;)es
generating L Qg , k(x), by Nakayama’s lemma, there is a surjective map u: @,c; Ox e — L.
Since f~!(y) is regular, by [SP, 0009], the module L ®gy , Of-1(y) is free. Therefore, the map
(u®1);: (B Ox.z€1) ®os k(y))z — (L ®py k(y)), is an isomorphism. By [EGA 1V, 11.3.7],
u is injective. Consequently, the Ox ;-module L is free and proj.dimﬁxvzﬁm < n.

(ii) We prove the assertion Zariski-locally. There is a surjective map 69" — .Z, whose kernel ¥ is
a torsion-free coherent Ox-module. Since V' is a valuation ring, ¢ is f-flat, so by (i) we have
proj.dim,, % < n. Therefore, [SP, 0005] implies that proj.dim, % = proj.dim, 4 +1<n+1.

(iii) By the analysis in §7.1, there is an exact sequence 0 — %, — ﬁ%kz R ﬁg—?lx. By (ii), we have

[SP, 0005]

proj.dimg,  F, max (0, proj.dim,  _(coker ¢) —2) < max(0,n — 1). O

x

Since (V'[t],t) is a Henselian pair, by [Ces22a, 3.1.3(b)], reductive group schemes over V and V[t] are in
a one-to-one correspondence under extension-restriction operations. Hence, in the sequel, it suffices to
assume that reductive group schemes are defined over V. We bootstrap from the case when G = GL,,.

Lemma 7.4. For a valuation ring V, every vector bundle over V ((t)) extends to a vector bundle over
Vtl. In particular, all GL,-torsors (or equivalently, all vector bundles) over V ((t)) are trivial:

Hé}t(v((t))a GLn) = {*}

Proof. The Henselization V{t} of V[t] along tV[t] is a filtered direct limit of étale ring extensions
R; over V[t] with isomorphisms V[t]/tV[t] — R;/tR;. By [BC22, 2.1.22], a vector bundle & over
V((t)) descends to a vector bundle & over V{t}[1]. By a limit argument [Gir71, VII, 2.1.6], we have
H} (V{t}[1].GL,) = lim, H} (R;[}],GL,) so & descends to a vector bundle &, over R;,[+] for an iy.
Due to [GR18, 10.3.24 (ii)], &;, extends to a finitely presented quasi-coherent sheaf #;, on R;,. Note that
R;, is coherent (7.1), by [SP, 01BZ], #;, is coherent. By Lemma 7.2, 57, := #,"" is reflexive. For the
morphism f: Spec R;, — SpecV, we exploit Lemma 7.3 (iii) to conclude that .74, is free. Consequently,
&, extends to the vector bundle (74, )y g over V[t]. Since &, = 4|y () is trivial, & is trivial. O

The anisotropic (indeed, the ‘wound’) case of the following Proposition 7.5 (c) was established in
[FG21, Cor. 4.2], where the authors considered formal power series over general rings.
Proposition 7.5. For a valuation ring V' with fraction field K and a V -reductive group scheme G,

(a) the following natural map of pointed sets induced by base change is bijective:
Hy (VI G) = He(V(1), G) X1 (k(vy.c) Hao (K[, G);

b) the map HL(V(t),G) — HL(K(t),G) has trivial kernel; and

( ét ét

(c) the map HL (V[t],G) — HL(V((t),G) has trivial kernel.

Proof.
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(a)

First, we show the surjectivity. If there are torsor classes o € HL (K[t],G) and B € HL (V((t)),G)
whose images in HZ, (K((t)),G) coincide, then we find a torsor class v € HL(V[t],G) whose
restrictions are o and /3. Recall the nonabelian cohomology exact sequence [Gir71, III, 3.2.2]
(GLo vy /G)(R) = H (R, G) — Hi (R, GLy)

such that the set of GLy,(R)-orbits GLy (R)\(GLy, v /G)(R) embeds into H} (R, G), where R can
be V((t)), K((t)), or K[t]. Recall that by Lemma 7.4, we have H}, (V((t)), GL,,) = {*} and note that
H}, (K[t],GL,) = {*}, so there are & € (GL, v /G)(K[t]) and 5 € (GL, vy /G)(V[t]) whose
images are ov and 3 respectively and such that the images of & and 3 in (GL,,vy /G)(K (1)) are in
the same GL,, (K ((t)))-orbit. By the valuative criterion for properness of the affine Graimannian,

GLn (K((t) = GLn(K[t]) - GLa(V (1)
holds, so up to group translations, we may assume that the images of & and 3 in (GLy,vy /G (K (1)
are identical. Because G is reductive, by [Alpl4, 9.7.7], the quotient GL,, v /G is affine over
V[t]. Thus, the fiber product V[t] — V((t)) X gy K[t] induces the following bijection of sets

(GLy vy /G)(V[H]) — (GLy, vy /G K] X (L, v /o)1) (GLn,vs /G) V(1)

Consequently, there is a ¥ € (GLy, v /G)(V[t]) corresponding to (a, ,8). In particular, the image
H} (V[t],G) of ¥ is a desired torsor class that induces o and 3, hence the surjectivity of (a).
It remains to show the injectivity. By [GR18, 5.8.14], we have bijections HZ, (V[t], G) ~ HL(V,G)
and H}, (K[t],G) ~ H.,(K,G). Then the Grothendieck-Serre for valuation rings Theorem 1.3
implies that HY (V[t],G) — H} (K[t], G) has trivial kernel. Therefore, the map of (a) is indeed
injective hence bijective.
For a Gy (4)-torsor X trivializes over K((t)), we take a trivial G gj-torsor X’ over K[t] with an
isomorphism ¢: X|g(z) — X'k (). By (a), there is a Gy -torsor X restricts to X such that

Xk is trivial. By the main result Theorem 1.3 and [GR18, 5.8.14], the map HL(V[t],G) —
H} (K[t],G) is injective. Hence, the torsor X that restricts to X is trivial.

By the Grothendieck—Serre over valuation rings (Theorem 1.3) and [GR18, 5.8.14], the map
He}t(v[[tﬂv G) - H;t(K[[tﬂv G)
is injective. Since K[t] is a discrete valuation ring, the map HZ (K[t],G) — H1 L(K(1),G)

is injective. The injective map HL (V[t],G) — HZ (K((t)),G) factors through H, (V[[t]] G) —
HL(V((t), ), hence the later is injective. O

Now we prove a variant of the Nisnevich’s purity conjecture for formal power series over valuation rings.

Corollary 7.6. For a reductive group scheme G over a valuation ring V', every Zariski-locally trivial
G-torsor over V((t)) is trivial, that is, we have

Hz, (V(#),G) = {}.

Proof. A Zariski G-torsor over V((t)) is an étale G-torsor over V((t)) trivializing over K((¢)). Hence the
assertion follows from Proposition 7.5 (b). O
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APPENDIX A. VALUATION RINGS AND VALUED FIELDS

The purpose of this appendix is to list the common properties of valuation rings and valued fields,
especially those used in this article, and to be as concise and brief as possible. We therefore try to cite
the literature just for endorsement, even though some of the arguments can be carried out directly.

A.1. Valuation rings. For a field K, a subring V' < K such that every = € K satisfies that z € V or
271 € V or both is a valuation ring of K ([SP, 052K, 00IB]). For the groups of units K* and V*, the
quotient I' := K*/V* is an abelian group with respect to the multiplications in K*. The quotient map
v: K* — T induces a map V\{0} ¢ K* — T, also denoted by v. This map v is the valuation associated
to V. Even though the rank of I" (and, of V') is the “order type” of the collection of convex subgroups
([EPO5, p. 26, 29]), in practice, one may identify the rank of V as its Krull dimension when it is finite
([EP05, Lem. 2.3.1]). The abelian group I" has an order >: for 7,7’ € ', we declare that v > +' if and only
if v — 4 is in the image of v: V\{0} — I'. By [SP, 00ID], (T',>) is a totally ordered abelian group, called
the value group of V. If I' ~ Z, then v is a discrete valuation. Conversely, given a totally ordered abelian
group (T, =, +), if there is a surjection v: K* — T such that for all z,y € K, we have v(zy) = v(z) +v(y)
and v(z + y) = min{v(z),v(y)}, then v extends to a map K — I' U {0} by declaring that v(z) = oo if
and only if x = 0, where o is a symbol whose sum with any element is still co; such v is also a valuation
on K ([EP05, p. 28]). If a field K is equipped with a valuation v, then the pair (K, v) is called a valued
field. Every valuation v on K gives rise to a valuation ring V(v) c K as the following

V(v) ={ze K|v(z) = 0},

and every valuation ring of K comes from a valuation ([EP05, Prop. 2.1.2]). There may exist different
valuations v and v’ on a field K, yielding different valuation rings of K. Two valuations v and v/ on K
are equivalent, if they define the same valuation rings V(v) = V(v/). By [EP05, Prop. 2.1.3], v and v/ are
equivalent if and only if there is an isomorphism of ordered groups ¢: I', — I',» such that cov = /.

Proposition A.2. Let V be a valuation ring of a field K with value group T' and p € V' a prime ideal.

(i) V is a normal local domain and every finitely generated ideal of V is principal;
(ii

)
) for the localization V,, of V at p, we have p = pV,;
(iii) Vj is a valuation ring for K and V/p is a valuation ring for the residue field k(p) = V,/p;
)
)

(iv) we have an isomorphism V — V /p Xv,/p Vp and thus SpecV = Spec V' /p Ugpec(v, /p) SPEC Vp;
(v) for the value groups I'y, and I'y, of V,, and of V /p respectively, we have isomorphisms
Ly~ (V)" /V*  and I'y/Ty) ~Ty,,
corresponding to the short exact sequence 1 — (V,)*/V* — KX /V* — K*/(V,)* — 1;
(vi) the Henselization and the strict Henselization of V' are valuation rings with value groups T';

(vii) if V is Henselian, then V,, and V' /p are Henselian valuation rings.

Proof. For (i), see [FK18, Ch. 0, 6.2.2]. To show (ii), we write every element in pV, as a/b, where a € pV’
and be V\p. If a/b e V then a/b € p. Since V is a valuation ring, it remains the case when b/a € V. Then
b € pV, which leads to a contradiction. For (iii), see [FK18, Ch. 0, Prop. 6.4.1]. For (iv), we note that V' =
{z € Vy|(x mod pV,) € V/p} ([FK18, Ch. 0, Prop. 6.4.1]). The spectral aspect follows from [SP, 0B7J].
For (v), we first deduce from the fiber product V'~ V' /p xy, , V}, that T'y ), = w(p)* /(V/p)* =~ (V)" /V*
then substitute this into the short exact sequence 1 — Frac(V/p)*/(V/p)* — K*/V* — K*/(V,)* — L.
For (vi), see [SP, 0ASK]. For (vii), note that V;, and V/p are valuation rings due to (iii). By [SP, 056WQ],
V' /p is Henselian. For V,,, we use Gabber’s criterion [SP, 09XI] to check that every monic polynomial

f(T) =TT - 1)+ anTV + - + a1 T + ay, where a; € pV, for i =0,--- ,N and N > 1

has a root in 1 4 pV,. Note that this criterion only involves pV,. Here, by (ii), pV}, is equal to p. By
[SP, 0DYD], the Henselianity of V' implies that (V,p) is a Henselian pair, thereby we conclude. O
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A.3. Valuation topologies. Given a field K with a valuation v: K — T" U {00}, for each v € T' and
each = € K, we define the open ball U, (x) c K with center  and radius v, as the following subset

Uy(z) :=={ye K|v(y —x) >}
All open balls (Uy(z))yer form an open neighborhood base of # and generates a topology on K, the
valuation topology determined by v. Under this topology, the valued field (K, v) has a unique (up to
isomorphisms) field extension ([A(, V) that is complete in which K is dense ([EP05, Thm. 2.4.3]), that is,
the completion of (K,v) with respect to the valuation topology. Similarly, the valuation ring V of ([A( ,U)
is the valuative completion of V. The inequality v(z + y) = min{v(x),v(y)} leads to various topological
properties, some of which are counter-intuitive. In the sequel, we let By (z) := {z € K |v(z —z) = 7} and
Sy (z) :={z € K |v(z —x) = v} be the closed ball and the sphere with center  and radius y respectively.

Proposition A.4. For a valued field (K,v) with the valuation topology and elements x € K and y €T,
(i) fory,z e K, the smallest and second smallest among v(z — y),v(y — z), and v(z — x) are equal;
(ii) every point of the closed ball B.(x) is a center: for all y € B, (z), we have B,(y) = B(z);
(iii) every closed ball is open and every open ball is closed;
(iv) any pair of balls in K are either disjoint or nested;
(v) the sphere Sy (z) is both closed and open, hence it is not the boundary 0B.(x) of By(x).
In particular, the valuation topology on (K, v) is Hausdorff and the valuation ring V(v) < K is clopen.
Proof. 1f (i) holds, then for any a # b in K and § := v(a — b), we have Uss(a) n Uas(b) # &, hence K is

Hausdorfl. The assertion (i) follows from the inequality v(c+d) = min{v(c), v(d)} for all ¢,d € K, and the
other assertions follow from (i), see the arguments in [EP05, p. 45 and Rem. 2.3.3] and [PGS10, p. 3]. O

A.5. Absolute values. Let K be a field. An absolute value on K is a function |- |: K — R¢ such that
(1) |z| = 0 if and only if x = 0; (2) |zy| = |=| - ly|; and (3) |z + y| < |z| + |y| (triangle inequality). We say
that | - | is archimedean, if [N| € Rxg is unbounded; | - | is nonarchimedean, if |[N| € Rs¢ is bounded.
These notions originate from the ‘Archimedean property’: for arbitrary positive real numbers x and v,
there is n € N such that n > y. In fact, an absolute value | - | is nonarchimedean if and only if it satisfies
the strong triangle inequality |z + y| < max{|z|, |y|}: one takes M such that |N| < M and notes that

k —k
o+ yl" < 2o [ ()] 12l 1" < (n+ )M - max{|a], [y[}",

whose n-th root when n — +0o0 yields | + y| < max{|z|,|y|}. In particular, by checking the axioms of
valuations (A.1), an absolute value |- |: K — Ry is nonarchimedean if and only if there is a valuation
v: K — T'u {oo} of rank one (a value group is of rank one if and only if it is embeddable into R as a
totally ordered abelian subgroup, so I' © R) such that e *() = | . |.

A.6. Huber rings and Tate rings. Let R be a topological ring. We say that
- R is adic, if it has an ideal I < R such that {I"}*, form a basis of open neighborhoods of 0 € R;
- R is Huber, if it has an open subring Ry with a finitely generated ideal I < Ry making Ry adic;

- R is Tate, if it is Huber and has a topologically nilpotent unit w € R\{0}, that is, lim,_, y, @™ = 0.
Now, we present a relation (¢f. [Hub96, I, Def. 1.1.4]) between valuation topologies and the notions above.

Proposition A.7. Let (K,v) be a valued field with valuation ring V. The following are equivalent:
(i) V has a prime ideal of height one;

(ii) the valuation topology on K is induced by a valuation of rank one;
(iii) K is a Tate ring under its valuation topology;
)

(iv) K has a topologically nilpotent unit for the valuation topology.
26



In particular, there exist nonzero topologically nilpotent elements w € V', and every such w satisfies that
A/ (w) is the prime ideal of height one in V.

Proof. Before proving the equivalences, first note that the set of all ideals of V' ordered by inclusion is
totally ordered. For two ideals I,J c V, if there is an element j € J such that j ¢ I, then ji~! ¢ V for
all i € I\{0}. By the definition of valuation rings, ij~! € V for all i € I. This implies that I < (j) < J.

(i)=>(iv). For the prime p < V of height one, we claim that any w € p\{0} is topologically nilpotent. For
any v € I, it suffices to find an n € Z, such that @™ € U, = {x € K |v(z) > v}. Since v: K — I' is
surjective, we show that for any § € K where a,b e V\{0}, there is n € Z, such that v(@") > v(a) —v(b),
in particular, such that v(w™) > v(a) suffices. If v(a) = v(w™) holds for all n, then a/@w™ € V holds for
all n, that is, a € (), (@™). But [, (@w™) = 0 ([FK18, Ch. 0, Prop. 6.7.2]), so a = 0, a contradiction.

(i)=>(iii). As above, there is a topologically nilpotent unit w € V of K. Take V as an open subring of K,
it suffices to show that {(w™)}; %, form a basis of open neighborhoods of 0 € V. We have known that
every U, contains some (w"™). Conversely, for a fixed n € Z, there is v € I" such that U, < (w”). To see
this, we need to find v € I' such that the condition v(x) > + implies that v(x) > v(w™). It suffices to let
v > v(w") = nv(w), say, ¥ = (n + )v(w).

(iii)=>(iv). By definition of Tate rings, it is obvious.

(i)=(ii). The argument for (i)=(iii) implies that {(@™)}, form a basis of open neighborhoods of 0 € V.
As w lies in the height-one prime ideal, the valuation topology on K is induced by its rank-one valuation.

(ii)=>(i). The rank-one valuation corresponds to the height-one prime ideal of V', since all nonequivalent
valuations of K are in one-to-one correspondence with the prime ideals of V' ([FK18, Ch. 0, Prop. 6.2.9]).

(iv)=>(i). For a topologically nilpotent unit @ € K, we prove that p := 4/(w) is the prime ideal of height
one. If a,b € V such that ab € p and b ¢ p, then there are an integer n > 0 and c € V such that a"b" = wc,
and @/b™ € V holds for every integer m > 0. It follows that a*" = w(w/b*")c? € (w), so a € p and we see
that p is a prime. To see that p is of height one, note that the set of ideals of V' is totally ordered under
inclusion and @™ tends to zero, every nonzero prime ideal q between (0) and p satisfies () < q < p for
some N. Taking radicals of these inclusions, we find that q = p, thus p is of height one. O

A.8. Nonarchimedean fields. A nonarchimedean field is a topological field K whose topology is
induced by a nontrivial valuation of rank one on K.® By the end of A.5, a topological field K is
nonarchimedean if and only if its topology is induced by a nonarchimedean absolute value on K. If
an absolute value on K is not nonarchimedean, then it is archimedean. We note that the existence of
absolute values on the topological field K is a prerequisite for our discussion of Archimedean properties.

A.9. a-adic topologies. For a valuation ring V' and an element a € my/\{0}, the a-adic topologies on V'
and on V[é] are determined by the respective fundamental systems of open neighborhoods of 0:

{a"V},s0 and {Im(a"V—»V[%])}TgO.

Note that the a-adic topology on V[%] is not defined by ideals, since such topology is only V-linear
([GR18, Def. 8.3.8(iii)]). Then, the a-adic completions V* and V[1]* are the following inverse limits:

V@i=lim _ V/a" and V[i]e = liLnn>0(V[%]/Im(a"V - VI[Li]).

Proposition A.10. For a valuation ring V and a nonzero element a € my,

(i) v/(a) is the minimal one among all the prime ideals containing (a), while (,~q(a") is the mazimal
one among all the prime ideals contained in (a);

(i) the a-adic completion V. — V* factors through the a-adically separated quotient V/ Np=o(a™);

—~

iii) the rings V|=]| an V" are valuation rings, and we have V |+ (R 7 ;
iii) the rings V[2] and V I d we have V[1]* = V*[1

3Some authors additionally require the completeness of K, for instance, Scholze [Sch12, Def. 2.1].
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(iv) if V has finite rank n = 1 and (a) is between the primes of heights r — 1 and r for 1 < r < n,
then rank(V*) =n—r + 1 and rank(V[2]) = r — 1;

a

(v) we have f/\"[%] = Frac V*, which is also the a-adic completion of the residue field of VL],
(vi) the valuative completion ‘7, the a-adic completion f/\”, and V' share the same residue field;

(vii) we have an isomorphism to a fiber product of rings V. ——> V[1] x =, V", where K is the a-adic
completion of K = FracV.

Proof. For (i), see [FK18, Ch. 0, Prop. 6.2.3 and 6.7.1]. For (ii), see the end of [FK18, Ch. 0, Cor. 9.1.5].

For (iii), by [FK18, Ch. 0, Cor. 9.1.5], 7 is a valuation ring. Let % € K := FracV be an element which

is not in V[£]. Hence, a"g ¢V for every n > 0, which means that g € (a™) for every n > 0. So g lies in
M=o (a™), the maximal ideal of V[2] by (i). The relation f/\“[%] = V/[E]“ is due to [BC22, Ex. 2.1.10 (2)]
and the fact that V is a-torsion-free. For (iv), by (i), the rank of V[1] is r — 1; also, q := (1, ,(a")
is the prime ideal of height r — 1. Note that 7" is the a-adic completion of the a-adically separated
quotient V/q, whose rank is n — r + 1. By [FK18, Ch. 0, Thm. 9.1.1 (5)], we conclude that V* is also
of rank n — r + 1. For (v), by [FK18, Ch. 0, Prop. 6.7.2], ‘//\“[%] is the fraction field of V. By (i), the
residue field x of V[1] is V[1]/(,.,a"V, hence the a-adic completion of  is V/[;]“, which is f/\“[%]
by (iii). For (vi), see [EP05, Prop. 2.4.4], (ii) and [FK18, Ch. 0, Thm. 9.1.1 (2)]. For (vii), we apply
[SP, 0BNR] to the a-adic completion V — ¥7: note that V/a"V ~ 7 Ja" 7" for every positive integer
n ([FK18, Ch. 0, 7.2.8]), also, V[a*] = ker(V — V[1]) = 0 and V*[a®] = ker(V* — ‘//\“[%]) = 0; the
exactness of 0 > V — V[1]® Ve - f/\“[%] — 0 implies the desired isomorphism V' —> V[1] x =, Ve o

A.11. Comparison of topologies. We have compared different valuation topologies to some extent
(Proposition A.7). Now, consider three kinds of topologies on a valuation ring V: the a-adic topology, the
valuation topology, and the my-adic topology, where my < V is the maximal ideal. First, the my-adic
topology is usually non-Hausdorff and does not coincide with any a-adic topology: for the rank-one
valuative completion C,, of the algebraic closure CTP of Q,,, the maximal ideal m of the valuation ring
Oc, of C, satisfies m = m2. Thus, for every nonzero a € m and every n > 0, we have (a) > m" = m.
Secondly, for a,b € my/\{0}, the comparison of a-adic and b-adic topologies is [FK18, Ch. 0, Prop. 7.2.1]:

the a-adic and b-adic topologies coincide <  +/(a) =/ (b),

and in such case, the a-adic completion is equal to the b-adic completion; also, the Henselizations of pairs
(V,a) and (V,b) coincide ([SP, OFOL]). Thirdly, to compare a-adic topologies and valuation topologies,
by Proposition A.7, V has a prime ideal of height one p if and only if there is a topologically nilpotent
w € V\{0} such that the valuation topology on V is w-adic and 4/(w) = p. In conclusion,

the valuation topology is nonarchimedean < it is a-adic for an a € my such that v/ (a) is height-one.

Of course, valuation topologies and a-adic topologies do not coincide in general since each kind of both
has aforementioned internal differences. Lastly, a valuation ring V' equipped with an a-adic topology for
some a € my \{0} may not have any prime ideal of height one, so its valuation topology can not be a-adic.

Corollary A.12. For a valuation ring V', an element a € my\{0}, and the a-adic completion 7 of V,
the fraction field K := Frac V* is a nonarchimedean field with respect to the a-adic topology.

Proof. Let T" be the value group of . If there is a ~ € I such that v(a™) < for all n € Z, then there
isabe V" such that v(b) = y and b e (), (a™). Since V" is a-adically separated, we have ), (a™) =0 so
b =0, that is, v = 00 ¢ I'. Thus every U, contains some a", that is, a is topologically nilpotent for the
valuation topology, hence K* is a Tate ring with its open subring . By Proposition A.7, \/@ is of
height one in f/\“, the valuation topology on K* is a-adic hence nonarchimedean by A.11. (I

We end this appendix by a comparison of Henselianity and completeness of valuation rings.
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Proposition A.13. For a valuation ring V' equipped with an a-adic topology for an element a € my\{0}.
If V is a-adically complete, then the pair (V,a) is Henselian. If V' has finite rank n and a is not in the
unique prime p < V' that is of height n — 1, then the a-adic completion V* is a Henselian local ring.

Proof. If V is a-adically complete, then the Henselianity of (V, a) follows from [FK18, Ch. 0, Prop. 7.3.5 (1)].
Now we show the second part. By Proposition A.10 (iv), 77" is of rank one. Since (f/\”’, af/\“) is a Henselian
pair and Proposition A.10 (i) implies that 4/(a) = my, by [SP, OFOL], the local ring V* is Henselian. O

[EGA ]

[EGA TV,]

[EGA V4]

[SGA lnew]

[SGA 3u]

[SGA 3111 new}

[SGA 4q1]

[Abh56]
[Abh66]
[Alp14]
[Bar67]
[BM21]

[BLRYO]

[BouAC]
[BC22]
[BTn]
[Ces15]

[Ces22a]

REFERENCES

A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. I. Le langage des schémas,
Inst. Hautes Etudes Sci. Publ. Math. 4 (1960), 228. MR0217083 (36 #177a)
Alexander Grothendieck and Jean Dieudonné, Eléments de géométrie algébrique. IV. Etude locale
des schémas et des morphismes de schémas. II, Inst. Hautes Etudes Sci. Publ. Math. 24 (1965),
231 (French). MR0199181 (33 #7330)
Alexander Grothendieck and Jean Alexandre Eugéne Dieudonné, Eléments de géométrie algébrique.
IV. Etude locale des schémas et des morphismes de schémas IV, Inst. Hautes Etudes Sci. Publ.
Math. 32 (1967), 361 (French). MR0238860 (39 #220)
Revétements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathe-
matical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003 (French). Séminaire
de géométrie algébrique du Bois Marie 1960-61. [Algebraic Geometry Seminar of Bois Marie
1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated
reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)].
MR2017446 (2004g:14017)
Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes générau,
Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et
A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970
(French). MR0274459 (43 #223b)
Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome III. Structure des
schémas en groupes réductifs, Documents Mathématiques (Paris) [Mathematical Documents (Paris)],
8, Société Mathématique de France, Paris, 2011 (French). Séminaire de Géométrie Algébrique du
Bois Marie 1962-64. [Algebraic Geometry Seminar of Bois Marie 1962-64]; A seminar directed by
M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M.
Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR2867622
Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol.
270, Springer-Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie
1963-1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration
de N. Bourbaki, P. Deligne et B. Saint-Donat. MR0354653 (50 #7131)
Shreeram Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic
p # 0, Ann. of Math. (2) 63 (1956), 491-526, DOI 10.2307/1970014.
Shreeram Shankar Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and
Applied Mathematics, Vol. 24, Academic Press, New York-London, 1966.
Jarod Alper, Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom. 1
(2014), no. 4, 489-531, DOI 10.14231/AG-2014-022.
Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350-355, DOI
10.1007/BF01109800.
Bhargav Bhatt and Akhil Mathew, The arc-topology, Duke Math. J. 170 (2021), no. 9, 1899-1988,
DOI 10.1215/00127094-2020-0088 (English).
Siegfried Bosch, Werner Liitkebohmert, and Michel Raynaud, Néron models, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21,
Springer-Verlag, Berlin, 1990.
Nicolas Bourbaki, Commutative algebra. Chapters 1-7, Elements of Mathematics (Berlin), Springer-
Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.
Alexis Bouthier and Kestutis Cesnavi¢ius, Torsors on loop groups and the Hitchin fibration, Annales
scientifiques de 1’Ecole normale supérieure 55 (2022), no. 3, 791-864, DOI 10.24033/asens.2506.
F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence
d’une donnée radicielle valuée, Inst. Hautes Etudes Sci. Publ. Math. 60 (1984), 197-376.
Kestutis Cesnavicius, Topology on cohomology of local fields, Forum Math. Sigma 3 (2015), el6, 55,
DOI 10.1017/fms.2015.18. MR3482265
_, Grothendieck—Serre in the quasi-split unramified case, Forum Math. Pi 10 (2022), 30, DOI
10.1017/fmp.2022.5 (English). Id/No e9.

29


https://stacks.math.columbia.edu/tag/0F0L

[Ces22b]
[CLRR&0]
[CTS78]

[CTS87]

[Con12]
[Con14]
[CPOS]
[CP0Y]
[Cut09]
[EP05]
[Fed22]
[Fed21]

[FP15]

[FG21]
[FK18]
[Gab81]
[GR18]

[GGMB14]

Gir71]
[Gro58)]
[Gro68)]
[GL23]
[GP23]
[Har68]
[Hub96]
[Mac17]
[Mil80]
[MBO1]

[Nag66]

, Problems about torsors over regular rings, Acta Math. Vietnam. 47 (2022), no. 1, 39-107,
DOI 10.1007/s40306-022-00477-y (English).

M. D. Choi, T. Y. Lam, B. Reznick, and A. Rosenberg, Sums of squares in some integral domains,
J. Algebra 65 (1980), no. 1, 234-256, DOI 10.1016/0021-8693(80)90248-3.

Jean-Louis Colliot-Théléne and Jean-Jacques Sansuc, Cohomologie des groupes de type multiplicatif
sur les schémas réguliers, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 6, A449-A452.
Jean-Louis Colliot-Théléne and Jean-Jacques Sansuc, Principal homogeneous spaces under flasque
tori: applications, J. Algebra 106 (1987), no. 1, 148-205, DOI 10.1016/0021-8693(87)90026-3.
MR878473

Brian Conrad, Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012),
no. 1-2, 61-97, DOI 10.4171/LEM /58-1-3.

, Reductive group schemes, Autour des schémas en groupes. Vol. I, 2014, pp. 93—444.
Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds in positive characteristic.
I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra
320 (2008), no. 3, 1051-1082, DOI 10.1016/j.jalgebra.2008.03.032.

, Resolution of singularities of threefolds in positive characteristic. II, J. Algebra 321 (2009),
no. 7, 1836-1976, DOI 10.1016/j.jalgebra.2008.11.030.

Steven Dale Cutkosky, Resolution of singularities for 3-folds in positive characteristic, Amer. J.
Math. 131 (2009), no. 1, 59-127, DOI 10.1353/ajm.0.0036.

Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2005.

Roman Fedorov, On the Grothendieck-Serre conjecture on principal bundles in mized characteristic,
Trans. Am. Math. Soc. 375 (2022), no. 1, 559-586, DOI 10.1090/tran/8490 (English).

, On the purity conjecture of Nisnevich for torsors under reductive group schemes, 2021.
preprint, available at https://arxiv.org/pdf/2109.10332.pdf.

Roman Fedorov and Ivan Panin, A proof of the Grothendieck—Serre conjecture on principal bundles
over regular local rings containing infinite fields, Publ. Math. Inst. Hautes Etudes Sci. 122 (2015),
169-193, DOI 10.1007/s10240-015-0075-z. MR3415067

Mathieu Florence and Philippe Gille, Residues on affine Grassmannians, J. Reine Angew. Math.
776 (2021), 119-150, DOI 10.1515/crelle-2021-0007.

Kazuhiro Fujiwara and Fumiharu Kato, Foundations of rigid geometry. I, EMS Monographs in
Mathematics, European Mathematical Society (EMS), Ziirich, 2018.

Ofer Gabber, Some theorems on Azumaya algebras, The Brauer group (Sem., Les Plans-sur-Bex,
1980), 1981, pp. 129-209.

Ofer Gabber and Lorenzo Ramero, Foundations for almost ring theory, 2018. preprint, available at
https://arxiv.org/abs/math/0409584v13.

Ofer Gabber, Philippe Gille, and Laurent Moret-Bailly, Fibrés principauz sur les corps valués
henséliens, Algebr. Geom. 1 (2014), no. 5, 573612 (French, with English and French summaries).
MR 3296806

Jean Giraud, Cohomologie non abélienne (1971), ix+467. Die Grundlehren der Mathematischen
Wissenschaften, Band 179.

Alexander Grothendieck, Torsion homologique et sections rationnelles, Anneaux de Chow et
applications. Séminaire Claude Chevalley (2e année) Tome 3, 1958, pp. Exp. no.5, 1-29 (French).
, Le groupe de Brauer. II: Théorie cohomologique, Dix Exposés Cohomologie Schémas,
(North-Holland, Amsterdam; Masson, Paris), 1968, pp. 67-87 (French).

N. Guo and F. Liu, Grothendieck—Serre for constant reductive group schemes, preprint (2023).
Available at http://arxiv.org/abs/2301.12460.

N. Guo and I. Panin, On the Grothendieck-Serre conjecture for projective smooth schemes over a
DVR, preprint (2023). Available at http://arxiv.org/abs/2302.02842.

Giinter Harder, Eine Bemerkung zum schwachen Approrimationssatz, Arch. Math. (Basel) 19
(1968), 465-471.

Roland Huber, Etale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics,
E30, Friedr. Vieweg & Sohn, Braunschweig, 1996.

Marco Maculan, Mazimality of hyperspecial compact subgroups avoiding Bruhat—Tits theory, Ann.
Inst. Fourier (Grenoble) 67 (2017), no. 1, 1-21.

James S. Milne, Etale cohomology, Princeton Mathematical Series, vol. 33, Princeton University
Press, Princeton, N.J., 1980.

Laurent Moret-Bailly, Problémes de Skolem sur les champs algébriques, Compositio Math. 125
(2001), no. 1, 1-30, DOI 10.1023/A:1002686625404.

Masayoshi Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. 5 (1966),
163-169, DOI 10.1215/kjm/1250524533.

30


https://arxiv.org/pdf/2109.10332.pdf
http://arxiv.org/abs/2301.12460
http://arxiv.org/abs/2302.02842

[Nisg9)]

[Pan20]
[PS23a)
[PS23b)

[PGS10]

[Pra82]
[Qui76]

[Rou77]

[Sch12]
[Ser58]
[Ser02]
[SP]
[Tem13]
[Tem17]

[Zar40)

Yevsey A. Nisnevich, Rationally trivial principal homogeneous spaces, purity and arithmetic of
reductive group schemes over extensions of two-dimensional reqular local rings, C. R. Acad. Sci.
Paris Sér. I Math. 309 (1989), no. 10, 651-655 (English, with French summary). MR1054270

1. A. Panin, Proof of the Grothendieck—Serre conjecture on principal bundles over regular local rings
containing a field, Izv. Ross. Akad. Nauk Ser. Mat. 84 (2020), no. 4, 169-186, DOI 10.4213/im8982.
I. Panin and A. Stavrova, On the Gille theorem for the relative projective line: I, preprint (2023).
Available at http://arxiv.org/abs/2304.09465.

, On the Gille theorem for the relative projective line: II, preprint (2023). Available at
http://arxiv.org/abs/2305.16627.

C. Perez-Garcia and W. H. Schikhof, Locally convex spaces over non-Archimedean valued fields,
Cambridge Studies in Advanced Mathematics, vol. 119, Cambridge University Press, Cambridge,
2010.

Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits,
Bull. Soc. Math. France 110 (1982), no. 2, 197-202.

Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167171, DOI
10.1007/BF01390008.

Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, U.E.R. Mathématique,
Université Paris XI, Orsay, 1977. Theése de doctorat, Publications Mathématiques d’Orsay, No.
221-77.68.

Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Etudes Sci. 116 (2012), 245-313, DOI
10.1007/s10240-012-0042-x.

Jean-Pierre Serre, Fspaces fibrés algébriques, Anneaux de Chow et applications. Séminaire Claude
Chevalley (2e année) Tome 3, 1958, pp. Exp. no.1, 1-37 (French).

, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in
Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised
by the author. MR1867431 (2002i:12004)

The Stacks Project Authors, Stacks Project, 2018.

Michael Temkin, Inseparable local uniformization, J. Algebra 373 (2013), 65-119, DOI
10.1016/j.jalgebra.2012.09.023.

, Tame distillation and desingularization by p-alterations, Ann. of Math. (2) 186 (2017),
no. 1, 97-126, DOI 10.4007/annals.2017.186.1.3.

Oscar Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852-896,
DOI 10.2307/1968864.

31


http://arxiv.org/abs/2304.09465
http://arxiv.org/abs/2305.16627

	1. The Grothendieck–Serre conjecture and Zariski's local uniformization
	Acknowledgements

	2. The case of tori
	3. Algebraizations and a Harder-type approximation
	4. Passage to the Henselian rank one case: patching by a product formula
	5. Passage to the semisimple anisotropic case
	6. Proof of the main theorem
	7. Torsors over V((t)) and Nisnevich's purity conjecture
	Appendix A. Valuation rings and valued fields
	References

