THE BASS-QUILLEN CONJECTURE FOR TORSORS OVER VALUATION RINGS

NING GUO AND FEI LIU

ABSTRACT. For a valuation ring V', a smooth V-algebra A, and a reductive V-group scheme G satisfying
a certain natural isotropicity condition, we prove that every Nisnevich G-torsor on AX descends to a
G-torsor on A. As a corollary, we generalize Raghunathan’s theorem on torsors over affine spaces to
a relative setting. We also extend several affine representability results of Asok, Hoyois, and Wendt
from equi-characteristics to mixed characteristics. Our proof relies on previous work on the purity
of reductive torsors over smooth relative curves and the Grothendieck—Serre conjecture for constant
reductive group schemes.
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1. INTRODUCTION

Let A be a Noetherian regular ring. The classical Bass—Quillen conjecture, which grew out of Serre’s
problem that was solved by Quillen in [Qui76] and Suslin in [Sus76], asserts that every vector bundle
on the affine space A} descends to A; see [Qui76, Comment 1 on page 170] and [Bas73, Problem IX].
Building on foundational earlier work, the conjecture was resolved affirmatively in the unramified case or,
more generally, when A is regular over a Dedekind ring; see [Qui76], [Lin81], and [Pop89]. Nonetheless,
the conjecture remains open in the general case.

In this article, we consider a variant of the conjecture for torsors under reductive group schemes. As will
become evident, imposing a specific isotropicity condition on the reductive groups is crucial.

Definition 1.1 (Total isotropicity; see [Ces22a, Definition 8.1] or [Ces22b, Section 1.3.6]). Let G be a
reductive group scheme over a scheme S. For a point s € S, the adjoint semisimple Og s-group G?‘ﬁds .

decomposes as ([SGA 311 new, exposé XXIV, proposition 5.10(i)]):
G, . = Il Resg,/0,.(Gi), (1.1.1)

where each Spec R; — Spec Os s is a finite étale cover, and Gj is a simple’ adjoint R;-group scheme (of
constant type). We say that G is totally isotropic at s € S, if each G; contains a copy of G,, g, as an
R;-subgroup. We say that G is totally isotropic if it is totally isotropic at each point of S.

Remark 1.2. By [SGA 311 ey, exposé XX VI, corollaire 6.12], G is totally isotropic at a point s € S if
and only if every G; in (1.1.1) contains a parabolic R;-subgroup that is R;-fibrewise proper.

Examples.
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1.3. A reductive group G over a field k is totally isotropic if and only if every (almost) k-simple factor
of its derived subgroup G4 is isotropic (i.e., every factor contains a copy of G k)-

1.4. Tori and quasi-split (in particular, split) reductive group schemes over an arbitrary base scheme
are totally isotropic. Also, the total isotropicity is stable under base change and finite products.

Note that Fedorov [Fed21, Def. 1] refers to totally isotropic groups as strongly locally isotropic groups.
The vector bundle case G = GL,, in the following conjecture recovers the original Bass—Quillen conjecture.

Conjecture 1.5 (Bass—Quillen for torsors). For a Noetherian regular ring A and a totally isotropic
reductive A-group scheme G, every Nisnevich-locally” trivial G-torsor on AY descends to A, that is,

HY (A, G) = Hy (AN, G)  via pullback. (1.5.1)

Remarks.

1.6. Both the total isotropicity of G and the Nisnevich-local triviality (instead of merely étale-local
triviality) of torsors are essential: (1) there are non-trivial étale PGL,,-torsors over A} even for a
separably closed but non-algebraically closed field k if char(k)|n, so they do not descend to k (see
[CTS21, théoreme 5.6.1(vi)]); (2) there exists a generically trivial (in fact, Zariski-locally trivial)
SO(z% + - - - + x3)-torsor over the affine R-plane A% that does not descend to R (see [Par78]). In
fact, Balwe and Sawant have shown in [BS17, Theorem 4.8] that if G is defined over an infinite
perfect field & and is not totally isotropic, then the pullback map (1.5.1) cannot be bijective for
all smooth k-algebras. See also [Fed16] for more concrete counterexamples.

1.7. The Grothendieck—Serre conjecture predicts that an étale torsor under a reductive group scheme G
over a regular semilocal domain A is trivial if it trivializes over the fraction field. This conjecture
was settled affirmatively when A contains a field ([FP15] and [Pan20]), when A is a semilocal
Dedekind domain R (see [Nis82, Nis84] and [Guo22]; this case, by induction, implies the case
when A is Henselian). For A that is essentially smooth over R (namely, A is unramified), the
subcases when G descends to a reductive R-group and when G is totally isotropic are resolved in
[GL.23, § 1.3] and [CF23] respectively. For a comprehensive summary of the state of the art, see
[GL23] or [CF23]. The last aforementioned case implies that, when A is unramified in the context
of Conjecture 1.5, a G-torsor over AY is Nisnevich-locally trivial, if and only if it is generically
trivial, if and only if it is Zariski-locally trivial. Therefore, Conjecture 1.5 can be reformulated as:

H. (A,G) = HL (AY,G)  via pullback.

Apart from the classical vector bundle case G = GL,,, Conjecture 1.5 was proved in the following cases:

e Asok, Hoyois, and Wendt settled the case when A is smooth over a field £ and G is the pullback
of a totally isotropic reductive k-group; see [AHW18] for k infinite and [AHW20] for k finite.

e Stavrova established the case when A contains a field in [Sta22, Corollary 5.5], and an earlier result
[Stal9, Theorem 4.4] addressed the case when A contains an infinite field. (For the convenience
of readers, a greatly simplified version of her proof is outlined in § 4.2.)

. éesnaviéius, in [Ces22c], independently proved Conjecture 1.5 in the case when A contains a field.
This was achieved by completing the solution of Nisnevich’s purity conjecture over such an A, as
provided by Fedorov [Fed21], and subsequently deriving it from Nisnevich’s purity conjecture.

Consequently, the equi-characteristic case of Conjecture 1.5 has been fully settled. However, to the best
of our knowledge, the mixed characteristic case remains open. Moreover, as readers will note in § 4.2, the
approach used for the equi-characteristic case does not readily extend to the mixed characteristic case at
present, primarily because the relative Grothendieck—Serre conjecture (Remark 4.3) remains unresolved.

2Recall that a Nisnevich covering of a scheme X is a family of étale morphisms {f;: U; — X };cs such that for every z € X,
there is a u € U; lying over = inducing an isomorphism of residue fields ky — k. In particular, if X is an integral scheme,
every Nisnevich cover of X has a generic section. If X is quasi-compact and quasi-separated, then the definition above is
equivalent to that the morphism f: | |,.; U; — X admits a section over each stratum Z;\Z;;1 for a sequence of finitely
presented closed subschemes ¢J = Z,, ¢ Z,_1 < --- € Z1 < Zp = X. If X is Noetherian, this follows directly from a
Noetherian induction argument. The general quasi-compact quasi-separated case is a little bit subtle and perhaps not so

well known; we refer the interested reader to a note of Hoyois, see https://hoyois.app.uni-regensburg.de/papers/allagree.pdf.
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The first main result of this article settles a variant of Conjecture 1.5. This result is novel even in the
specific case where R is a discrete valuation ring (DVR) of mixed characteristic, stated as follows.

Theorem 1.8 (Theorem 4.1). Let A be a ring that is ind-smooth over a discrete valuation ring R, and
let G be a totally isotropic reductive R-group scheme. Then, via pullback, we have the following bijection

HYy (A G) =5 HE (AN, G, or, equivalently, HJ, (A,G) = Hy (AY,G).

Moreover, we investigate Conjecture 1.5 for a broad class of rings A that resemble Noetherian regular
rings, specifically those that are (ind-)smooth over a Priifer ring, and thus may be non-Noetherian. Recall
that a ring is Prifer if all its local rings are valuation rings; a valuation ring is a domain whose ideals
are totally ordered by inclusion. While Noetherian Priifer rings correspond precisely to Dedekind rings,
non-Noetherian Priifer rings are equally prevalent: they arise naturally in non-Archimedean analytic
geometry and perfectoid theory, with the integer rings of perfectoid fields serving as notable examples.

More significantly, the recently introduced v- and arc-topologies define covers by testing maps from
(spectra of) valuation rings, providing a powerful framework for reducing various problems to analogous
ones for valuation rings. Furthermore, growing evidence suggests that a ring smooth over a Priifer ring
exhibits behaviour akin to that of a Noetherian regular local ring; see [GL.24] for further discussion of
this perspective. These insights motivate the study of geometry over Priifer rings in loc. cit. and, in our
scenario, the Bass—Quillen Conjecture 1.5 within this broader framework.

Theorem 1.9 (Theorem 4.1). Let A be a ring that is ind-smooth over a Prifer ring R, and let G be a
totally isotropic reductive R-group scheme. Then, via pullback, we have the following bijection

Hi (A, G) = Hy (AN, @), or, equivalently, Hy, (A,G) —=> HL (AY,Q).

Remark 1.10. In view of this result, we expect that Conjecture 1.5 holds for all totally isotropic
reductive group scheme over a ring A (instead of merely over R) that is ind-smooth over a Priifer ring.

In the case G = GL,, we note that special subcases of Theorem 1.9 have already been studied in the
literature. Specifically, Simis and Vasconcelos considered the case when A is a valuation ring and N = 1
in [SVT71], while Lequain and Simis treated the case when A is a Prifer ring in [LS80] (its special case
when A is a DVR was previously settled in [Qui76, Theorem 4’]). Insofar as we are aware, there are no
other instances of Theorem 1.9 in such a non-Noetherian context, even for the simplest group G = GL,,.

The proof of Theorem 1.9 follows the same spirit as the approach to the Bass—Quillen conjecture for
vector bundles in [Lin81] and [Pop89], but the technical details are significantly more intricate and
demanding. This proof is enabled by recent progress on the mixed characteristic Grothendieck—Serre
conjecture obtained in [GL.23], particularly the new geometric presentation lemma (Proposition 3.8), and
the Priiferian purity result for G-torsors (Theorem 2.4), specifically its important corollary, Theorem 2.7.

1.11. Torsors over relative affine spaces. In [Rag89, Theorem A], Raghunathan proved that for a
totally isotropic reductive group G over a field k, a G-torsor over A,ICV is trivial if it is trivial over AkNS and
over the origin 0 € Afcv (k), where k° denotes a separable closure of k. As an application of Theorem 1.9,
we can efficiently reprove this result and even present a generalization, as stated below.

Theorem 1.12. Let A be a domain with fraction field K and G a reductive A-group scheme. Assume
o cither A is reqular Noetherian and contains a field, and G is totally isotropic,
e or A is ind-smooth over a Priifer ring R, and G descends to a totally isotropic reductive R-group.
Then, a G-torsor over AY is trivial if and only if it is trivial over A¥.. and the zero section 04 € AY (A).

Remark 1.13. Assuming the most general case of Conjecture 1.5, our argument will extend Theo-
rem 1.12 to the case of an arbitrary ind-smooth domain A over a Priifer domain.

1.14. A'-homotopy theoretic affine representability in mixed characteristics. As applications
of Theorem 1.9, we can generalize many results from [AHW18] and [AHW20], extending them beyond
equi-characteristics to encompass mixed characteristics as well.

Let S be a quasi-compact quasi-separated scheme. Denote by Spc(S) the co-category of motivic spaces
over S (it is overviewed in § 5.1). If 2" and % are presheaves of spaces on the category of S-smooth
3



schemes, then we write
['%/'a Q/]Al =To MapSpc(S) (Lmot(f%)7 Lmot (@)),

where Lyt : P(Smg) — Spe(S) denotes the motivic localization functor (see § 5.1). Given an S-group
scheme G, write BG for its usual bar construction®, considered as a presheaf of spaces on the category
of smooth S-schemes. We establish the following representability of Nisnevich-locally trivial torsors.

Theorem 1.15. Let S be the spectrum of a Priifer ring (e.g., a DVR) and let G be a totally isotropic
reductive S-group scheme. Then, for every smooth affine S-scheme U, there is a functorial bijection

H(U,G) ~ [U,BG]:.

In [AHWI18, Theorem 4.1.3] and [AHW20, Theorem 2.5], Theorem 1.15 was established under the as-
sumption that S is the spectrum of a field. In fact, using [AHW18, Theorem 2.3.5], Theorem 1.15 can be
deduced from the assertion that ByisG is Al-naive, as defined in [AHW18, Definition 2.1.1] (see § 5.3).
This assertion, in turn, is a direct consequence of the Bass—Quillen Theorem 1.9.

As an application of Theorem 1.15, we obtain the following result, which, for certain homogeneous spaces
of totally isotropic reductive groups, identifies naive homotopy classes and true A'-homotopy classes.

Theorem 1.16. Let S be the spectrum of a Prifer ring (e.g., a DVR). Suppose that
(i) H — G is a closed immersion of totally isotropic reductive S-group schemes, and
(ii) the étale H-torsor G — G/H is Nisnevich-locally trivial'.
Then, G/H is At-naive. In particular, for every smooth affine S-scheme U, there is a functorial bijection

o0 (SingAlG/H) (U) ~ [U,G/H]u.

Theorem 1.16 was previously established in [AHW 18] and [AHW20] under the assumption that S is the
spectrum of a field.

1.17. Notations and conventions. Throughout this article, we work with commutative rings with
units. We freely use the language of co-categories, as set out in [HTT] and [HA]. By abuse of notation,
the nerve of an ordinary category C will also be denoted by C, unless otherwise specified.

e For a point s of a scheme (resp., for a prime ideal p of a ring), ks (resp., k,) denotes its residue
field. The total ring of fractions of a ring A is denoted by Frac A. The base change along a
morphism of schemes S — S’ is denoted by (—)g; if S’ = Spec R’ is affine, we also write (—) .

e For a quasi-compact quasi-separated scheme S, we let Smg := Sm¥® denote the category of

quasi-compact quasi-separated smooth S-schemes.

e Let S be a scheme, and let G be an S-group scheme. Given an S-scheme T, a G-torsor over
T refers to a Gr = G xg T-torsor. If G is S-smooth (typically reductive in this article) and
7 € {Nis, ét}, B, G denotes the classifying stack of G-torsors on the (small, big, etc.) 7-site of S.

e A denotes the simplex category, i.e., the category of finite non-empty linearly ordered sets.
e S denotes the co-category of spaces (or anima, as per [(S24, § 5.1]).

e For co-categories C and D, let P(C, D) := Fun(C°P, D) denote the co-category of D-valued presheaves
on C. For brevity, we write P(C) for P(C,S). If 7 is a Grothendieck topology on C, we let
Shv,(C) < P(C) denote the full subcategory of S-valued 7-sheaves.

e A7 denotes the standard cosimplicial scheme over SpecZ, i.e., the functor A — Schz given by

[n] — Az := Spec <m> '

For any scheme S, we let Ag: A — Sch/g denote the base change of AZ to S.
o SingAl denotes the singular construction endofunctor on P(Smg), see (5.1.2).

3Speciﬁcally, BG is the functor that sends an S-smooth scheme U to the nerve of G(U), where G(U) is treated as a category
with a single object whose endomorphisms are given by G(U).
4Equivalently, generically trivial by [GL23, Theorem 1.1].
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2. PURITY FOR TORSORS UNDER REDUCTIVE GROUPS

The primary aim of this section is to present the purity of reductive torsors on smooth relative curves over
Priifer bases, as stated in Theorem 2.4. We then derive the main result, Theorem 2.7. Finally, we recall
the statement of Grothendieck—Serre conjecture for constant reductive group schemes in Theorem 2.6.

To help the reader get a feeling for working over Priifer bases, we recall the following ring-theoretic result.
Lemma 2.1. Let X be a scheme that is flat and locally of finite type over an integral Priifer scheme S.
(i) The scheme X is locally of finite presentation and locally coherent.
(ii) For every point x € X, the local ring Ox , is coherent.
(iii) If X is irreducible, then all nonempty S-fibres have the same dimension.
)

iv) If Ox._ ¢ is reduced for a mazimal point & € X, then the local Ting Ox ¢ is a valuation ring and
FHS 83
the extension Os s — Ox ¢ induces an isomorphism of value groups.

Proof. For (i)-(ii), see [GL24, Lemma 3.2.1]. For (iii), see [EGA IV, lemme 14.3.10]. For (iv), see
[MB22, théoréme A]. O

The following result, combined with limit arguments, often allows one to only consider Priifer rings of
finite Krull dimension.

Lemma 2.2. Every semilocal Priifer domain R is a filtered direct union of its subrings R; such that:
(i) for every i, the ring R; is a semilocal Priifer domain of finite Krull dimension; and

(ii) for ¢ large enough, R; — R induces a bijection on the sets of mazximal ideals, hence is fpqc.

Proof. Write Frac(R) = u;K; as the filtered direct union of the subfields of Frac(R) that are finitely
generated over its prime field K. For R; := R n K;, we have R = U;R;. For (i), it suffices to see that
every R; is a semilocal Priifer domain whose local rings have finite ranks. Let {p;}i<j<n be the set of
maximal ideals of R. Then R = [, _ j<n By, 1s the intersection of the valuation rings R, ;. Thus we have

R; = ﬂlstn (K Ry,).
Since K; /8 has finite transcendence degree, by Abhyankar’s inequality [Abh56, Corollary 1], every K; m
Ry, is a valuation ring of finite rank. By [BouAC, VI, § 7, proposition 1-2], R; is a semilocal Priifer
domain, and its local rings at maximal ideals are precisely the minimal elements of the set {K;n Ry, }1<j<n
under inclusion. This implies (i). For (ii), the quasi-compact property follows from the affineness of
Spec R — Spec R;; each map R; — R is flat since R is torsion free. As flat morphism lifts generalizations,
it remains to show the bijection between maximal ideals of R; and of R. Namely, we show that for ¢
large enough there is no strict inclusion relation between K; N R,C.j1 and K; N Rpj2 for 71 # jo. Indeed,
if 75 € pj\U,jip; Py for 1 < j < n, then (ii) holds for any i for which {7;}1<j<n < Ki. O

The following result will facilitate the passage to the case of closed point in the closed fibre.

Lemma 2.3. Let V be a valuation ring and let V. — A be an essentially finitely presented (resp., es-
sentially smooth) local homomorphism of local rings. There are an extension of valuation rings V. V'
identifying their value groups and an essentially finitely presented (resp., essentially smooth) homomor-
phism V' — A of V -algebras inducing a finite residue field extension.

Proof. Assume that A = Ox , for an affine scheme X finitely presented over V and a point z € X lying

over the closed point s € Spec(V). Let t = tr.deg(k,/ks). After shrinking X around z if necessary, choose

sections by, ..., b; € I'(X, Ox) such that their images by, - - - , b; in k, form a transcendental basis of k, /k,.

Define p: X — A!, by sending the standard coordinates T, ..., T; of Al to by,..., b, respectively. Since

the transcendental degree of kg(b1,--- ,bt)/ks is ¢, the image 1) := p(x) is the generic point of A} , so
5



V= ﬁAﬁ/m is a valuation ring whose value group is I'y» ~ T'y. Note that k,/k, is finite, the map
V' — A induces a finite residue field extension.

Now assume that V' — A is essentially smooth. For a closed point z € X specializing z, after shrinking
X around z, there is a factorization X > AYY — Spec V' for an étale morphism 7. As the étale morphism
7 induces finite separable extension of residue fields, we may assume that V = k, and X = AY. Since
{z} is an irreducible closed subscheme of X = AY, either we are done or it suffices to take the projection
AN — AN-1 given by a standard coordinate iterately until the image of x is the generic point of A%. O

The following result provides an analog of the purity theorem of Colliot-Thélene and Sansuc for reductive
group torsors over two-dimensional regular Noetherian schemes ([CTS79, théoréme 6.13]).

Theorem 2.4 ([GL24, Theorem 6.3]). Let X be a smooth relative curve over a semilocal affine Priifer
scheme S. Let Z < X be a closed subscheme such that the inclusion j: X\Z — X is quasi-compact, and

Z, =& for each generic pointne S and codim(Z;,Xs) =1 forallse S.
Let G be a reductive X -group scheme. Then, restriction induces the following equivalence
BsG(X) — By G(X\2).
In particular, we have a bijection of pointed sets

Helt(Xa G) = Helt(X\Z7 G)

Remark 2.5. In higher relative dimensions, the purity Theorem 2.4 is inapplicable, even in the Noe-
therian setting and for G = GL,,. For instance, for any Noetherian regular local ring (R, mg) of Krull
dimension at least 3, there exists a vector bundle over Spec(R)\{mpg} that cannot be extended to Spec R.

The following resolution of the Grothendieck—Serre conjecture for constant reductive group schemes is a
key input for our Theorem 1.9. In particular, we first use it to deduce Theorem 2.7.

Theorem 2.6 ([GL23, Theorem 1.1]). For a Priifer ring R, an irreducible, affine, smooth R-scheme X,
and a reductive R-group scheme G, every generically trivial G-torsor on X is Zariski-semilocally trivial:

the sequence 1 — Hy, (X,G) — H}(X,G) — H}(K(X),G) is exact,
where K(X) is the function field of X. In other words, for every semilocal ring A of X, we have
ker (H} (A, G) — H (Frac A, G)) = {*}.

For any commutative unital ring A, we let A(t) denote the localization S~!A[t] with respect to the
multiplicative system S of monic polynomials in A[t].

Theorem 2.7. Let R be a semilocal Prifer domain and let G be a reductive R-group scheme. Then, a
G-torsor over R(t) is trivial if and only if it is generically trivial.

Proof. Let £ be a generically trivial G-torsor over R(t). Denote by t the Jacobson radical of R. We
observe that R(t) is the semilocalization of the projective ¢-line P, over R along the infinity section
DR/ € Pl with s 1= 1 inverted:
R(t) = O]P}Q;WR/\* [%] :
Note that cop/, is precisely the set of closed points of {s = 0}. Hence, £ spreads out to a generically
trivial G-torsor € on a punctured neighborhood of {s = 0} in IP’}Z. By patching torsors, we may first
extend & so that its definition locus contains the generic fibre PL., where K = Frac(R). Similarly,
we may assume that & is defined at the maximal point ¢ of each R-fibre of ]P’}%; note that OHD}% clsa
valuation ring. To see this, we may focus on the case where Spec R (and so PL) is topological Noetherian
(using Lemma 2.2); then we again patch torsors using Noetherian induction and the Grothendieck—Serre
conjecture for valuation rings ([Guo24, Theorem 1.3]): every generically trivial G-torsor defined on an
open subset of Spec Op}% ¢ 1s trivial. Now, the definition locus of £ satisfies the conditions of X \Z in the
purity Theorem 2.4, so £ extends to a G-torsor & on PL. Hence, by Theorem 2.6, the pullback of £ to
is trivial, so is the further pullback g lr(ty = €. O
6
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3. TORSORS OVER RELATIVE AFFINE SPACES

3.1. The Quillen patching and its inverse. A central technique for studying torsors over A% is a
local-to-global principle known as Quillen patching. A key insight of Gabber allows one to generalize it
to rather general classes of group-valued functors, see [Ces22¢, Corollary 5.1.5]. We record it below only
for locally finitely presented group schemes, which is the main case of interest for us.

Theorem 3.2. Let R be a ring and let G be a locally finitely presented R-group scheme.

(a) For a G-torsor X over R[t1,...,tq], the set S = R of those r € R such that X|(gp,. . )2
descends to a G-torsor over R[] is an ideal.

(b) A G-torsor over R[t1,...,tq] descends to a G-torsor over R iff it does so Zariski-locally on R.

More generally, the analogues of (a) and (b) hold with R[t1,...,t4] replaced by any Zgg-gmded R-algebra

A~ C—Dil,“.,idZO Ai17~u)id such that R = Ao)“,70.

Compared to Quillen patching Theorem 3.2, the following ‘inverse’ patching construction is more ele-
mentary, but still quite useful. The case where G = GL, and A = R[t1,...,ty] is due to Roitman
[Roi79, Proposition 2].

Lemma 3.3. Let R be a ring, let G be a quasi-affine, flat, finitely presented R-group scheme, let A =
@il,...,mzo Aiyin bea Zgév-graded R-algebra (resp., a Zgév—gmded domain over R) such that R —
,,,,, 0, and suppose that every G-torsor on A (resp., every generically trivial G-torsor on A) descends
to a G-torsor on R. Then, for any multiplicative subset S < R, every G-torsor on Ag (resp., every
generically trivial G-torsor on Ag) whose restriction to each local ring of (Ao,...0)s ~ Rs extends to a
G-torsor on R descends to a G-torsor on Rg.

(The relevant case for us is when A = R[t1,...,tN].)

Proof. We focus on the part on generically trivial torsors, since the other is [Ces22b, Proposition 5.1.10].

Let X be a generically trivial G-torsor on Ag whose restriction to each local ring of (4¢...0)s =~ Rg
extends to a G-torsor on R. Using Quillen patching Theorem 3.2, we can enlarge S to reduce to the
case when Rg is local. Then, by our assumption, the restriction of X to (Ao...0)s ~ Rs extends to a
G-torsor Xy on R. Applying a limit argument, we can reduce to the case when S = r is a singleton, at
the cost of Rg no longer being local. Notice that the projection onto the (0, ...,0)-th component

R® (@(il,...,m);&(o,...,o) Aiy,in [H) = A[%] X R[1] R— R

induces an isomorphism both modulo ™ and on r™-torsion for every n > 0. So, by [Ces22b, Proposi-
tion 4.2.2], we can glue the G-torsor X on A[%] with the G-torsor Xy on R to obtain a generically trivial

G-torsor X on A[4] X 1) R. Observe that
A[%] XR[;] R~ COI

im A,

ieN

where the transition maps A — A are maps of R-algebras that become isomorphisms over Rg and are
given by multiplications by 7"+~ on the degree (i1,...,in)-part A;, ;. Hence, by a standard
limit argument, X descends to a generically trivial G-torsor on some copy of A in the direct colimit.
Therefore, by assumption, it descends further to a G-torsor on R. The base change to Rg of this final

descent gives a desired descent of X to a G-torsor on Rg. (I

3.4. Torsors on AY under reductive R-group schemes. The following result was conjectured in
[Ces22b, Conjecture 3.5.1] and settled later in [Ces22c, Theorem 2.1(a)].

Theorem 3.5. For a ring R and a totally isotropic reductive R-group scheme G, any G-torsor on Ag
that is trivial away from some R-finite closed subscheme of AX is trivial.

Notice that the isotropicity assumption on G is essential, see, e.g., [Fed16] for counterexamples.

Sketch of proof. Let P be a G-torsor on A that trivializes over AN\Z, where Z < AY is a R-finite

closed subscheme. As Z is also finite under the projection A% — Ag ~1 onto the first (N —1)-coordinates,

replacing R with Ag ~1 reduces us to the key case when N = 1. In this case, one extends P to a G-torsor
7



P over P}, (by gluing P with the trivial torsor over P}L\Z). Then 75|oo » Is trivial, and, by base change
along A}, — Spec R (as observed by Gabber), one can reduce to showing that s*(’ﬁ) is trivial for a
section s € AL(R) (in fact, even s = Og by shifting). This statement is insensitive to replacing P by its
pullback along the map P, — PL given by [z: y] — [2¢: y?] for an integer d > 0, which allows one to
assume that G is moreover semisimple simply connected. Granted these reductions, we revert to prove
the stronger statement that 75| AL 18 trivial. For this, Quillen patching Theorem 3.2 reduces us to the
case of a local R. In this local case, one can try to modify P along oo so that it becomes trivial on the

closed fibre P, Jmp> a0d then argue using deformation rigidity of the trivial torsor on P! O

For tori, the following result shows that Conjecture 1.5 holds more generally for fppf-torsors (not merely
Nisnevich-torsors) over any integral, normal base ring.

Lemma 3.6. For a normal domain A, an A-group M of multiplicative type, the pullback
Hior (A, M) —> Hi (A%, M) s bijective.

Proof. When A is Noetherian, this is [CTS87, Lemma 2.4]. For a general normal domain A, we write it
as a filtered union of its finitely generated Z-subalgebras A;, and, by replacing A; with its normalization
(which is again of finite type over Z), we may assume that each A; is normal. Then we can conclude
from the Noetherian case via a limit argument, since M is finitely presented over A. O

3.7. A Geometric presentation lemma. A useful lemma due to Lindel [Lin81, Proposition 1 and
Lemma)] states that an étale extension of local rings A — B with trivial extension of residue fields induces
isomorphisms along a well-chosen nonunit r € A:

A/r"A —> B/r"B, where n>1.

In our context, where the prescribed B is essentially smooth over a valuation ring, we proved a variant
of loc. cit. that allows us to fix the » € B in advance, at the cost of the carefully choosing A to be a
local ring of an affine space over that valuation ring. This result is one of the crucial geometric tools
for attacking the Grothendieck—Serre conjecture for ‘constant’ reductive group schemes in [GL23]. Like
Lindel’s work on the Bass—Quillen conjecture for vector bundles, it also reduces the proof of Theorem 1.9
to the case where A is the coordinate ring of an affine open subset of some affine R-space.

For the sake of completeness, we present our Lindel-type result as follows. We will only use its aforemen-
tioned special case when Y = {r = 0} for a nonunit r € A and #x = 1 such that A/rA — B/rB.

Proposition 3.8 ([GL23, Proposition 4.4]). Let R be a semilocal Priifer domain. We fix
— an irreducible, affine R-smooth scheme X of pure relative dimension d > 0,
— a finitely presented closed subscheme Y < X that is of R-fibrewise codimension > 0, and
— a finite subset x < X.

If each fibre of x over a mazimal ideal m c R has fewer than max(# kmw,d) points, then there are
e an affine open W = X containing x and an affine open U = A%;
o an étale R-morphism f: W — U fitting into the following Cartesian square

WnY «—— W
H lf where flwnay: WY — U is a closed immersion.

WnY —— U,

Remark 3.9. The assumption on #x holds, for instance, if either x is a singleton or d > #x. Note that
a certain assumption on #x is necessary: when X is a smooth affine curve over a finite field A = F,
and x < X (F,), the resulting map f from Proposition 3.8 should give an injection x < A]}q, which is
impossible as soon as #x > q.



4. PROOF OF THE BASS*QUILLEN CONJECTURE FOR TORSORS OVER VALUATION RINGS
In this section, we prove the following result, the first main result of this paper.

Theorem 4.1. Let A be a ring that is ind-smooth over a Priifer ring R, and let G be a totally isotropic
reductive R-group scheme. Then, via pullback, we have

HllIis(A7 G) — Hlllis(Aga G) or, equivalently, H%ar(A7 G) — H%ar (A%7 G)

4.2. Sketch of proof of Conjecture 1.5 when A contains a field. Before proceeding further, we
briefly outline a proof of the equi-characteristic case of Conjecture 1.5, significantly simplifying Stavrova’s
argument in [Sta22] and also avoiding reliance on Nisnevich’s purity conjecture utilized in [Ces22¢].

Specifically, by employing Quillen’s patching Theorem 3.2 and inducting on N, the problem reduces to
showing that, for a totally isotropic reductive group scheme G over a regular local ring A containing
a field, every generically trivial G-torsor over Al is trivial. In other words, we need to show that the
following composition map between pointed sets has a trivial kernel:

Hélt(A}47 G) i) Hélt (A}(a G) = H;t(K<t)7 G)v
where K = Frac(A) and ¢t is the standard coordinate on the affine line. But this follows from:

(a) p has trivial kernel. This follows from the relative form of the Grothendieck—Serre conjecture
[Fed22, Theorem 1]: For a regular local ring R containing a field k, with fraction field K, a totally
isotropic reductive R-group scheme G, and an affine k-scheme W, no non-trivial G-torsor over
W xj R trivializes over W xj, K. (It remains to take W = A}.)

(b) v has trivial kernel. By [Gil02, corollaire 3.10], a generically trivial G-torsor over Ak is isomorphic
to Ay (€(1)) for some cocharacter A of Gk, so it is itself trivial as &'(1) is so. O

Remark 4.3. The above argument would generalize to the mixed characteristic case if one could prove
the relative form of the Grothendieck—Serre conjecture utilized in step (a) in this setting: For a DVR
D, an essentially smooth local D-algebra R with fraction field K, a totally isotropic reductive R-group
scheme G, and a flat affine D-scheme W, no non-trivial G-torsor over W x p R trivializes over W x p K.

4.4. Proof of Theorem 4.1. Since any section of AX — Spec A induces sections to the pullbacks in
Theorem 4.1, these pullbacks are injective. Thus, it remains to show that they are surjective. By Quillen
patching Theorem 3.2, we may assume that R is a valuation ring by replacing R with its localizations. By
a limit argument [Gir71, VII, 2.1.6], it suffices to assume that A is R-smooth. A relative limit argument
involving Lemma 2.2 reduces us further to the case of a finite-rank R.

Step 1: A is a polynomial ring over R.

It suffices to show that every generically trivial G-torsor & over R[t1,...,tn] is trivial; a fortiori, it
descends to a G-torsor over R. We will argue by double induction on the pair (N, rank(R)). If N = 0,
then, by convention R[ty,...,tn] = R, the assertion follows from [Guo24, Theorem 1.3] that a generically
trivial G-torsor over a valuation ring is trivial. Now assume N > 1 and set A" := R(tn)[t1,...,tN—1]

Claim 4.4.1. The G a/-torsor £4r descends to a G g ,)-torsor &.

Proof of the claim. Consider the natural projection m: Spec R(txy) — Spec R. By definition, R(ty) is
the localization of R[¢y] with respect to the multiplicative system of monic polynomials. Thus, the
closed fibre of  is a singleton py. Furthermore, the local ring R(tn),, is a valuation ring of Frac(R)(tn),
and its valuation restricts to the Gauss valuation on R[tx] associated to R given by

R[tn] = Tr, Y=g aithy — min; v(a;),

where v: R — I'g is the (additive) valuation on R. In particular, we see that R and R(tn)p, have the
same value group. To apply the Quillen patching Theorem 3.2 and conclude, it suffices to show that the
base change of Ea to R(tn)p[t1,...,tn—1] is trivial for every prime ideal p < R(ty). If p = po, then
the above discussion implies that rank(R,)) = rank(R), so the desired triviality of the base change
follows from induction hypothesis. If p # po, then w(p) € Spec R is not the closed point, and we then
have rank(R(,) < rank(R). Therefore, by the induction hypothesis, ERp(py[tr,...ty] 18 trivial, and hence
its further base change along Rr(y)[t1,...,tn] = R(tn)p[t1,. .., tx—1] is also trivial. O
9



Since £ is generically trivial, so is £4/. Recall that the local ring A’ at the generic point of the closed
fibre over R is a valuation ring, by the Grothendieck—Serre [Guo24, Theorem 1.3], the torsor €4 is
generically trivial on that closed fibre. Hence, by considering the pullback of £4: along a general section
s€E Ag(;}]) (R(tn)), we see that & is also generically trivial because it is trivial at the unique point lying
over mg. By Lemma 2.7, the torsor &, and hence also £ 4/, is trivial. Consequently, £ is trivial away from
the R[t1,...,ty_1]-finite closed subset {f = 0} = A¥ = Spec R[t1,...,ty] for some monic polynomial
f € R[tn]. By Theorem 3.5, the G-torsor £ must be trivial, which completes the induction process.

Step 2: A is the localization ﬁs for a polynomial ring R = Rluq, ..., uq] with respect to some multi-
plicative subset S < R.

We wish to apply the ‘inverse’ to Quillen patching Lemma 3.3, with R as the base ring and E[th oot
as the polynomial ring A. We still need to verify the assumptions there. First, by Step 1, any generically

trivial G-torsor over R[t1,...,tx] descends to a G-torsor over K. Second, for any generically trivial
G-torsor € over Rg[ty,...,tn], the restriction of € to each local ring of the 0-section
SpecRg ~ {t1 = ... =ty =0}CA%S

is trivial (so extends to the trivial G-torsor over é) Indeed, by Bass—Quillen in the field case, the
restriction of & to Frac(Rg)[t1,...,tn] is trivial. Thus, the restriction £|_ is generically trivial, and
hence is Zariski-locally trivial (Theorem 2.6). This verifies all the assumptions of Lemma 3.3.

Step 3: A is an arbitrary smooth R-algebra. Let € be a generically trivial G-torsor over AY. Our goal
is to show that &£ descends to a G-torsor over A. Using Quillen patching Theorem 3.2, we may assume
that A is an essentially smooth local algebra over a valuation ring R. By localizing R, we can further
assume that the ring map R — A is local.

We will argue by double induction on the pair (dim R, dim A — dim R) to show that £ is even trivial. If
dim R = 0, then R is a field, so we conclude from the classical field case settled in § 4.2. If dim A = dim R,
then A is also a valuation ring (Lemma 2.1 (iv)), so we reduce to the case already settled in Step 1.
Assume now that dim R > 0 and dim A — dim R > 0.

By Lemma 2.3, we can enlarge R (without changing dim R) such that A becomes the local ring Ox .,
where X is an irreducible affine R-smooth scheme of pure relative dimension d > 0, and « € X is a closed
point in the closed R-fibre of X. Note that d = dim A—dim R. By our Lindel-type result § 3.7, shrinking
X if needed, there are an étale R-morphism f: X — A% and a nonunit ro € Ag := ﬁA% f(z) such that
f induces a bijection Ag/roAo — A/rgA.
On the other hand, by induction hypothesis, £, is trivial for any p € Spec A\{m4} (thus descends to
P

the trivial G-torsor over Ay):

e cither p lies over a non-maximal ideal q — R, in which case Ry — A, is a local homomorphism,

dimRqy <dim R, and dimAp,—dimR;<d=dimA—dimR;

e or R — A, is a local homomorphism, in which case

dim A, —dim R < dim A — dim R.

Using Quillen patching Theorem 3.2, we conclude that EAJX )

[1/70]
Since F extends to a generically trivial G-torsor over A (for example the restriction of £ along any section

s e A (A)), it must be trivial by Theorem 2.6. Now, [Ces22a, Lemma 7.1] applies to the Cartesian square

descends to a G-torsor F over A[%]

AZ/’I‘O.A Ag

N . N
A140/7‘0140 AAO’
we may glue £ with the trivial G-torsor over A to obtain a G-torsor & over AY that trivializes
Ap[1/ro] Ao
over AIXO[ I By Step 2, the G-torsor & is trivial, so £ is trivial as well. (]

10
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Building on Theorem 4.1 and its equi-characteristic counterpart settled in § 4.2, we can now derive
Theorem 1.12, a generalization of Raghunathan’s result, [Rag89, Theorem A], to the relative context.

Proof of Theorem 1.12. In view of Theorem 4.1 and its equi-characteristic counterpart in full generality
sketched in § 4.2, it suffices to show the following.

Claim 4.4.2. If (G, A) satisfies Conjecture 1.5, then a G-torsor over AY is trivial if and only if it is trivial
over A¥, and over 04 € AY (A), where K = Frac A and K* is a separable closure of K.

Proof of the claim. Let £ be a G-torsor over AY such that 5|A§5 and &g, are both trivial. First, note
that it suffices to argue that £ is generically trivial so, in particular, we can assume that A is a field
(replacing A by its fraction field): indeed, if so, then £ will descend to A by Conjecture 1.5, and will thus
be trivial by checking along the zero section. O

Assume now that A = K is a field (Raghunathan’s situation in [Rag89, Theorem A]). We assume by
induction that &| aN-1 08 already trivial, where AX ! is regarded as a closed subscheme of AY via

AR = AN x g {0} = AR x i A = AR

Let m: AN — A%_l denote the projection onto the first (N — 1)-coordinates, and write Spec L for the
generic point of the target A%il. Then, taking generic fibre of m we obtain a G-torsor &| a1 which is
trivial over A}, and over 0 € Al (L). By a result of Raghunathan and Ramanathan (cf., [RR84]), this
implies that &| Al is trivial, so, in particular, £ is generically trivial, as desired. O

5. A'“-HOMOTOPY THEORETIC AFFINE REPRESENTABILITY IN MIXED CHARACTERISTICS

5.1. The oco-category of motivic spaces. Let S be a quasi-compact quasi-separated scheme and let
Smg denote the category of quasi-compact quasi-separated (equivalently, finitely presented) S-smooth
schemes”. The presentable co-category Spc(S) of motivic spaces over S is constructed from the ordinary
category Smg through the following steps:

a) Formally adjoin all small colimits in the co-categorical sense to create P(Smg) := P(Smg, S), the
oo-category of presheaves of spaces on Smg.

b) Formally invert the class of all Nisnevich covering sieves to create Shvyis(Smg), the co-category
of Nisnevich sheaves of spaces on Smg.

c¢) Formally contract the affine line A} by inverting the maps pr: A}, — U for all quasi-compact
quasi-separated (equivalently, all affine) S-smooth schemes U, to create Spc(S).

Concretely, Shvyis(Smg) < P(Smg) is the full subcategory spanned by those presheaves of spaces sat-
isfying Nisnevich (Cech) descent. According to Morel-Voevodsky [MV99, Proposition 1.4], a presheaf
satisfies Nisnevich descent if and only if it satisfies Nisnevich excision, that is, it sends the empty scheme
& to the final object * € S and sends Nisnevich squares to pullback squares in S (see also [SAG, Appen-
dix B.5.0.3]). As a result, the inclusion Shvyis(Smg) < P(Smg) is stable under both limits and filtered
colimits (since filtered colimits commute with pullbacks in §). Furthermore, since the pullback squares
form a small set of conditions, this inclusion has a left exact (see [HTT, Lemma 6.2.2.9]), accessible left
adjoint (see [HTT, Proposition 5.5.4.15])

LNiS: P(Sms) — SthiS(SmS),

called the Nisnevich sheafification functor. Similarly, by loc. cit., Spc(S) can be identified with the full
subcategory of Shvyis(Smyg) spanned by Al-local objects, i.e., those sheaves .# such that pr*: .#(U) —
Z (A};) for all U € Smg; moreover, the inclusion Spc(S) < Shvyis(Smg) admits an accessible left adjoint
(which is in general not left exact). Overall, Spc(S) is a presentable co-category, and the inclusion
Spc(S) © P(Smg) admits an accessible left adjoint

Lot : P(Smg) — Spe(S),

5The quasi-compact quasi-separated assumption has two advantages: 1) the inclusion Smg < Schys is stable under taking
pullbacks along smooth morphisms; 2) Smg is a small category, which cleanly avoids set-theoretical issues, although
ultimately this is unnecessary (see Remark 5.2).
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called the motivic localization functor. Moreover, by construction, the composition
Smg — P(Smg) =22 Spe(S)
is a functor such that postcomposing with it induces an equivalence
Fun”(Spc(S),C) <> Funyis a1 (Smg, C)

for any co-category C with all small colimits, where (—)nisa1 denotes the full subcategory of functors
satisfying Nisnevich codescent and Al-invariance, and (—)¥ denotes the full subcategory of colimit-
preserving functors. Finally, by [MV99, § 2, Lemma 3.20], Lot can be described as

N
Lot = (LNiS o SingAl) 1= colim,,, o Lnis © SingAl 0---0 Lyjs © SingAl . (5.1.1)

n times

Here, the singular construction endofunctor SingAl : P(Smg) — P(Smg) is described by the formula
Sing® 2 := colimaer 2 (A x7 —), (5.1.2)

where A7 denotes the standard cosimplicial scheme over SpecZ. It is known that SingAl takes values
in the full subcategory Pu1(Smg) < P(Smg) of Al-invariant presheaves and in fact it computes the left
adjoint to the inclusion Pg1(Smg) < P(Smg). In particular, since the category A°P is sifted [HTT,
Lemma 5.5.8.4], it follows that L. commutes with finite products.

Remark 5.2. In the construction of Spc(S) above, the category Smg can be replaced by either the
category of all smooth S-schemes or just the full subcategory Smgff of (absolutely) affine ones, without
altering the resulting oo-category Shvyis(Smg), and thus Spc(S), up to equivalences. For instance, to
demonstrate that that the restriction functor

Shvyis(Smg) — Shvyis(SmT) (5.2.3)

is an equivalence, with its inverse given by the right Kan extension functor, we can apply [HTT,
Lemma 6.5.3.9]. This follows from the observation that every scheme admits a bounded’ Zariski-
hypercover where each term is affine: every scheme (resp., separated scheme) has an affine open cover
such that every finite intersection is a separated scheme (resp., an affine scheme).

5.3. Representability results. Let % € P(Smg) be a presheaf of spaces on Smg. From the construc-
tion of Lyt () in (5.1.1), there is a canonical morphism

Sing® (F) — Luot (F). (5.3.4)
Following [AHW 18, Definition 2.1.1], we say that .% is A'-naive if the restriction of (5.3.4) to P(Sm%?)

is an isomorphism. Under the equivalence (5.2.3), .Z is Al-naive if and only if SingAlﬁ € Spc(S). This
follows, for instance, from the explicit formula (5.1.1) for Lyet. In the Al-naive case, for every X € Smasﬂ,

the map o (SingAlf> (X) = 7o (Lot (F) (X)) = [X, a1 is bijective.

The following result is very useful for commuting geometric realizations and pullbacks.

Lemma 5.4. Let C be an co-category. Consider the following Cartesian diagram in Fun(A°P P(C)):
(Z3)e — (Z£2)a
(Z1)e — (Z0)e.

If the simplicial object (moZo)e € Fun(A°P P (C,Set)) is constant in the simplicial direction, then the
following induced diagram of geometric realizations, valued in P(C), is also Cartesian:

[(Z3)e] —— |(22).]

| |

6That is, if (X;){2 _; denotes a hypercover, then there is an integer N such that if n > N, then the canonical map
Xn = ker([Jogi<n Xn—1 3 [logicjcn Xn—2) is an isomorphism.
12



Proof. Since the problem is sectionwise, we can formally replace C with the category =, allowing us to work
with P(x) = S. As argued in [AHW17, Proof of Lemma 4.2.1], the result then follows from the Bousfield—
Friedlander theorem. Alternatively, we could cite [Rezl7, Proposition 5.4] or [HA, Lemma 5.5.6.17]. O

Lemma 5.5 (¢f. [AHW17, Theorem 5.1.3]). Let

F € Shvns(Smg) U~ Shve(Sma)

be a Nisnevich sheaf. If mo(.F) is Al-invariant on smooth affine S-schemes, then F is A'-naive. In

particular, for every U € Smgﬁ, the natural map

o (SingAlﬁ) (U) = [U, Z)ar s bijective.

Proof. A key result proven in [AHW17, Proposition 2.3.2] (which refines [MV99, Proposition 1.4]) is
that a presheaf ¢4 on Smf‘glcf is a Nisnevich sheaf if and only if it satisfies affine Nisnevich excision, i.e.,
Y () = = and ¥ sends Nisnevich squares in Smf&ff to pullback squares in §. Given a Nisnevich square

V—7— Y

L

U—— X
in Sm%™. Then we have the following Cartesian square in Fun(A°P, S):

F(X x5 AY) — F(U x5 A%)

| l

9(5/ XsA.S) —_— 3“(‘/ XsA%).

By assumption, the simplicial set 7o #(V xg AY) is constant, we deduce from Lemma 5.4 (applied to
C = «) that the induced diagram of geometric realizations is a Cartesian square in §. By the criterion

mentioned above, SingAlﬁ is a Nisnevich sheaf on Sm®'. The result then follows. O
We can now finish the proof of Theorems 1.15 and 1.16.

Proof of Theorem 1.15. Let S be the spectrum of a Prifer ring. Let BnisG denote Lyis(BG), the
Nisnevich sheafification of BG. Then for every U € Smg, (BnisG)(U) is (the nerve of) the groupoid of
Nisnevich-locally trivial G-torsors over U, so that 7 (BnisG)(U) = Hy;(U, G). By the Bass—Quillen The-

orem 4.1, the presheaf Hy; (—, G) on szﬁ is A'-invariant, so Lemma 5.5 implies that SingAl (BnisG) ~
Lot (BrisG). To conclude, note that since Lyot(BG) ~ Liot(BnisG), by Lemma 5.5 we have:

[U, BG]Al = T Mapspc(s) (Lmot(U)7 Lmot (BG))

=~ 7o MapSpc(S) (Lmot (U)v Lmot (BNisG))
= [U, BnisGlar- -

Proof of Theorem 1.16. Let * = S — BpjsG denote the base point classifying the trivial G-torsor over
S. We then have the following Cartesian diagram in Shvyis(Smg):

G/nisH —— BrisH
l l (5.5.5)
BnisG,

*

where the right vertical arrow is induced by the inclusion H < G via functoriality, and G/nisH denotes
the Nisnevich sheafification of Smg 3 U — G(U)/H(U). By assumption, we can identify G/nisH
with the usual fpqc quotient G/H restricted to Smg. Evaluating the diagram (5.5.6) at Ay xg —, we
obtain a Cartesian diagram in Fun(A°?, P(Sm%1)). Since the reductive S-group G is totally isotropic,
Theorem 4.1 implies that the simplicial object

To(BnisG) (A% x5 —) = Hy (A% x5 —, @) € Fun(A°, P(Sm%T, Set))
13



is constant in the simplicial direction. By taking geometric realizations, Lemma 5.4 yields the following
Cartesian diagram in P(Sm%"):

Simg‘%1 (G/H) —— SingAl (BnisH)
l (5.5.6)

Sing®' (ByisG).

*

By the Bass—Quillen Theorem 4.1 and the Al-naive criterion Lemma 5.5, we have SingAl (BisH),
SingAl (BnisG) € Spc(S). As the inclusion Spc(S) < P(Sm%?) is stable under all limits, it follows
that SingAl (G/H) € Spc(S), i.e., G/H is Al-naive. This completes the proof. O
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