
THE BASS–QUILLEN CONJECTURE FOR TORSORS OVER VALUATION RINGS

NING GUO AND FEI LIU

Abstract. For a valuation ring V , a smooth V -algebra A, and a reductive V -group scheme G satisfying
a certain natural isotropicity condition, we prove that every Nisnevich G-torsor on AN

A descends to a
G-torsor on A. As a corollary, we generalize Raghunathan’s theorem on torsors over affine spaces to
a relative setting. We also extend several affine representability results of Asok, Hoyois, and Wendt
from equi-characteristics to mixed characteristics. Our proof relies on previous work on the purity
of reductive torsors over smooth relative curves and the Grothendieck–Serre conjecture for constant
reductive group schemes.
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1. Introduction

Let A be a Noetherian regular ring. The classical Bass–Quillen conjecture, which grew out of Serre’s
problem that was solved by Quillen in [Qui76] and Suslin in [Sus76], asserts that every vector bundle
on the affine space An

A descends to A; see [Qui76, Comment 1 on page 170] and [Bas73, Problem IX].
Building on foundational earlier work, the conjecture was resolved affirmatively in the unramified case or,
more generally, when A is regular over a Dedekind ring; see [Qui76], [Lin81], and [Pop89]. Nonetheless,
the conjecture remains open in the general case.

In this article, we consider a variant of the conjecture for torsors under reductive group schemes. As will
become evident, imposing a specific isotropicity condition on the reductive groups is crucial.

Definition 1.1 (Total isotropicity; see [Čes22a, Definition 8.1] or [Čes22b, Section 1.3.6]). Let G be a
reductive group scheme over a scheme S. For a point s P S, the adjoint semisimple OS,s-group Gad

OS,s

decomposes as ([SGA 3III new, exposé XXIV, proposition 5.10(i)]):
Gad

OS,s
»

ś

i ResRi{OS,s
pGiq, (1.1.1)

where each Spec Ri Ñ Spec OS,s is a finite étale cover, and Gi is a simple1 adjoint Ri-group scheme (of
constant type). We say that G is totally isotropic at s P S, if each Gi contains a copy of Gm,Ri

as an
Ri-subgroup. We say that G is totally isotropic if it is totally isotropic at each point of S.

Remark 1.2. By [SGA 3III new, exposé XXVI, corollaire 6.12], G is totally isotropic at a point s P S if
and only if every Gi in (1.1.1) contains a parabolic Ri-subgroup that is Ri-fibrewise proper.

Examples.
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1.3.
¯

A reductive group G over a field k is totally isotropic if and only if every (almost) k-simple factor
of its derived subgroup Gder is isotropic (i.e., every factor contains a copy of Gm,k).

1.4.
¯

Tori and quasi-split (in particular, split) reductive group schemes over an arbitrary base scheme
are totally isotropic. Also, the total isotropicity is stable under base change and finite products.

Note that Fedorov [Fed21, Def. 1] refers to totally isotropic groups as strongly locally isotropic groups.

The vector bundle case G “ GLn in the following conjecture recovers the original Bass–Quillen conjecture.

Conjecture 1.5 (Bass–Quillen for torsors). For a Noetherian regular ring A and a totally isotropic
reductive A-group scheme G, every Nisnevich-locally2 trivial G-torsor on AN

A descends to A, that is,

H1
NispA, Gq

„
ÝÑ H1

NispAN
A , Gq via pullback. (1.5.1)

Remarks.

1.6.
¯

Both the total isotropicity of G and the Nisnevich-local triviality (instead of merely étale-local
triviality) of torsors are essential: (1) there are non-trivial étale PGLn-torsors over A1

k even for a
separably closed but non-algebraically closed field k if charpkq|n, so they do not descend to k (see
[CTS21, théorème 5.6.1(vi)]); (2) there exists a generically trivial (in fact, Zariski-locally trivial)
SOpx2

1 ` ¨ ¨ ¨ ` x2
4q-torsor over the affine R-plane A2

R that does not descend to R (see [Par78]). In
fact, Balwe and Sawant have shown in [BS17, Theorem 4.8] that if G is defined over an infinite
perfect field k and is not totally isotropic, then the pullback map (1.5.1) cannot be bijective for
all smooth k-algebras. See also [Fed16] for more concrete counterexamples.

1.7.
¯

The Grothendieck–Serre conjecture predicts that an étale torsor under a reductive group scheme G
over a regular semilocal domain A is trivial if it trivializes over the fraction field. This conjecture
was settled affirmatively when A contains a field ([FP15] and [Pan20]), when A is a semilocal
Dedekind domain R (see [Nis82, Nis84] and [Guo22]; this case, by induction, implies the case
when A is Henselian). For A that is essentially smooth over R (namely, A is unramified), the
subcases when G descends to a reductive R-group and when G is totally isotropic are resolved in
[GL23, § 1.3] and [ČF23] respectively. For a comprehensive summary of the state of the art, see
[GL23] or [ČF23]. The last aforementioned case implies that, when A is unramified in the context
of Conjecture 1.5, a G-torsor over AN

A is Nisnevich-locally trivial, if and only if it is generically
trivial, if and only if it is Zariski-locally trivial. Therefore, Conjecture 1.5 can be reformulated as:

H1
ZarpA, Gq

„
ÝÑ H1

ZarpAN
A , Gq via pullback.

Apart from the classical vector bundle case G “ GLn, Conjecture 1.5 was proved in the following cases:

‚ Asok, Hoyois, and Wendt settled the case when A is smooth over a field k and G is the pullback
of a totally isotropic reductive k-group; see [AHW18] for k infinite and [AHW20] for k finite.

‚ Stavrova established the case when A contains a field in [Sta22, Corollary 5.5], and an earlier result
[Sta19, Theorem 4.4] addressed the case when A contains an infinite field. (For the convenience
of readers, a greatly simplified version of her proof is outlined in § 4.2.)

‚ Česnavičius, in [Čes22c], independently proved Conjecture 1.5 in the case when A contains a field.
This was achieved by completing the solution of Nisnevich’s purity conjecture over such an A, as
provided by Fedorov [Fed21], and subsequently deriving it from Nisnevich’s purity conjecture.

Consequently, the equi-characteristic case of Conjecture 1.5 has been fully settled. However, to the best
of our knowledge, the mixed characteristic case remains open. Moreover, as readers will note in § 4.2, the
approach used for the equi-characteristic case does not readily extend to the mixed characteristic case at
present, primarily because the relative Grothendieck–Serre conjecture (Remark 4.3) remains unresolved.

2Recall that a Nisnevich covering of a scheme X is a family of étale morphisms tfi : Ui Ñ XuiPI such that for every x P X,
there is a u P Ui lying over x inducing an isomorphism of residue fields kx

„
ÝÑ ku. In particular, if X is an integral scheme,

every Nisnevich cover of X has a generic section. If X is quasi-compact and quasi-separated, then the definition above is
equivalent to that the morphism f :

Ů

iPI Ui Ñ X admits a section over each stratum ZizZi`1 for a sequence of finitely
presented closed subschemes H “ Zn Ă Zn´1 Ă ¨ ¨ ¨ Ă Z1 Ă Z0 “ X. If X is Noetherian, this follows directly from a
Noetherian induction argument. The general quasi-compact quasi-separated case is a little bit subtle and perhaps not so
well known; we refer the interested reader to a note of Hoyois, see https://hoyois.app.uni-regensburg.de/papers/allagree.pdf.
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The first main result of this article settles a variant of Conjecture 1.5. This result is novel even in the
specific case where R is a discrete valuation ring (DVR) of mixed characteristic, stated as follows.

Theorem 1.8 (Theorem 4.1). Let A be a ring that is ind-smooth over a discrete valuation ring R, and
let G be a totally isotropic reductive R-group scheme. Then, via pullback, we have the following bijection

H1
NispA, Gq

„
ÝÑ H1

NispAN
A , Gq, or, equivalently, H1

ZarpA, Gq
„

ÝÑ H1
ZarpAN

A , Gq.

Moreover, we investigate Conjecture 1.5 for a broad class of rings A that resemble Noetherian regular
rings, specifically those that are (ind-)smooth over a Prüfer ring, and thus may be non-Noetherian. Recall
that a ring is Prüfer if all its local rings are valuation rings; a valuation ring is a domain whose ideals
are totally ordered by inclusion. While Noetherian Prüfer rings correspond precisely to Dedekind rings,
non-Noetherian Prüfer rings are equally prevalent: they arise naturally in non-Archimedean analytic
geometry and perfectoid theory, with the integer rings of perfectoid fields serving as notable examples.

More significantly, the recently introduced v- and arc-topologies define covers by testing maps from
(spectra of) valuation rings, providing a powerful framework for reducing various problems to analogous
ones for valuation rings. Furthermore, growing evidence suggests that a ring smooth over a Prüfer ring
exhibits behaviour akin to that of a Noetherian regular local ring; see [GL24] for further discussion of
this perspective. These insights motivate the study of geometry over Prüfer rings in loc. cit. and, in our
scenario, the Bass–Quillen Conjecture 1.5 within this broader framework.

Theorem 1.9 (Theorem 4.1). Let A be a ring that is ind-smooth over a Prüfer ring R, and let G be a
totally isotropic reductive R-group scheme. Then, via pullback, we have the following bijection

H1
NispA, Gq

„
ÝÑ H1

NispAN
A , Gq, or, equivalently, H1

ZarpA, Gq
„

ÝÑ H1
ZarpAN

A , Gq.

Remark 1.10. In view of this result, we expect that Conjecture 1.5 holds for all totally isotropic
reductive group scheme over a ring A (instead of merely over R) that is ind-smooth over a Prüfer ring.

In the case G “ GLn, we note that special subcases of Theorem 1.9 have already been studied in the
literature. Specifically, Simis and Vasconcelos considered the case when A is a valuation ring and N “ 1
in [SV71], while Lequain and Simis treated the case when A is a Prüfer ring in [LS80] (its special case
when A is a DVR was previously settled in [Qui76, Theorem 4’]). Insofar as we are aware, there are no
other instances of Theorem 1.9 in such a non-Noetherian context, even for the simplest group G “ GLn.

The proof of Theorem 1.9 follows the same spirit as the approach to the Bass–Quillen conjecture for
vector bundles in [Lin81] and [Pop89], but the technical details are significantly more intricate and
demanding. This proof is enabled by recent progress on the mixed characteristic Grothendieck–Serre
conjecture obtained in [GL23], particularly the new geometric presentation lemma (Proposition 3.8), and
the Prüferian purity result for G-torsors (Theorem 2.4), specifically its important corollary, Theorem 2.7.

1.11. Torsors over relative affine spaces. In [Rag89, Theorem A], Raghunathan proved that for a
totally isotropic reductive group G over a field k, a G-torsor over AN

k is trivial if it is trivial over AN
ks and

over the origin 0 P AN
k pkq, where ks denotes a separable closure of k. As an application of Theorem 1.9,

we can efficiently reprove this result and even present a generalization, as stated below.

Theorem 1.12. Let A be a domain with fraction field K and G a reductive A-group scheme. Assume

‚ either A is regular Noetherian and contains a field, and G is totally isotropic,

‚ or A is ind-smooth over a Prüfer ring R, and G descends to a totally isotropic reductive R-group.

Then, a G-torsor over AN
A is trivial if and only if it is trivial over AN

Ks and the zero section 0A P AN
A pAq.

Remark 1.13. Assuming the most general case of Conjecture 1.5, our argument will extend Theo-
rem 1.12 to the case of an arbitrary ind-smooth domain A over a Prüfer domain.

1.14. A1-homotopy theoretic affine representability in mixed characteristics. As applications
of Theorem 1.9, we can generalize many results from [AHW18] and [AHW20], extending them beyond
equi-characteristics to encompass mixed characteristics as well.

Let S be a quasi-compact quasi-separated scheme. Denote by SpcpSq the 8-category of motivic spaces
over S (it is overviewed in § 5.1). If X and Y are presheaves of spaces on the category of S-smooth
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schemes, then we write
rX , Y sA1 :“ π0 MapSpcpSqpLmotpX q, LmotpY qq,

where Lmot : PpSmSq Ñ SpcpSq denotes the motivic localization functor (see § 5.1). Given an S-group
scheme G, write BG for its usual bar construction3, considered as a presheaf of spaces on the category
of smooth S-schemes. We establish the following representability of Nisnevich-locally trivial torsors.

Theorem 1.15. Let S be the spectrum of a Prüfer ring (e.g., a DVR) and let G be a totally isotropic
reductive S-group scheme. Then, for every smooth affine S-scheme U , there is a functorial bijection

H1
NispU, Gq » rU, BGsA1 .

In [AHW18, Theorem 4.1.3] and [AHW20, Theorem 2.5], Theorem 1.15 was established under the as-
sumption that S is the spectrum of a field. In fact, using [AHW18, Theorem 2.3.5], Theorem 1.15 can be
deduced from the assertion that BNisG is A1-naive, as defined in [AHW18, Definition 2.1.1] (see § 5.3).
This assertion, in turn, is a direct consequence of the Bass–Quillen Theorem 1.9.

As an application of Theorem 1.15, we obtain the following result, which, for certain homogeneous spaces
of totally isotropic reductive groups, identifies naive homotopy classes and true A1-homotopy classes.

Theorem 1.16. Let S be the spectrum of a Prüfer ring (e.g., a DVR). Suppose that

(i) H Ñ G is a closed immersion of totally isotropic reductive S-group schemes, and

(ii) the étale H-torsor G Ñ G{H is Nisnevich-locally trivial4.

Then, G{H is A1-naive. In particular, for every smooth affine S-scheme U , there is a functorial bijection

π0

´

SingA1
G{H

¯

pUq » rU, G{HsA1 .

Theorem 1.16 was previously established in [AHW18] and [AHW20] under the assumption that S is the
spectrum of a field.

1.17. Notations and conventions. Throughout this article, we work with commutative rings with
units. We freely use the language of 8-categories, as set out in [HTT] and [HA]. By abuse of notation,
the nerve of an ordinary category C will also be denoted by C, unless otherwise specified.

‚ For a point s of a scheme (resp., for a prime ideal p of a ring), ks (resp., kp) denotes its residue
field. The total ring of fractions of a ring A is denoted by Frac A. The base change along a
morphism of schemes S Ñ S1 is denoted by p´qS1 ; if S1 “ Spec R1 is affine, we also write p´qR1 .

‚ For a quasi-compact quasi-separated scheme S, we let SmS :“ Smqcqs
S denote the category of

quasi-compact quasi-separated smooth S-schemes.

‚ Let S be a scheme, and let G be an S-group scheme. Given an S-scheme T , a G-torsor over
T refers to a GT :“ G ˆS T -torsor. If G is S-smooth (typically reductive in this article) and
τ P tNis, étu, Bτ G denotes the classifying stack of G-torsors on the (small, big, etc.) τ -site of S.

‚ ∆ denotes the simplex category, i.e., the category of finite non-empty linearly ordered sets.

‚ S denotes the 8-category of spaces (or anima, as per [ČS24, § 5.1]).

‚ For 8-categories C and D, let PpC, Dq :“ FunpCop, Dq denote the 8-category of D-valued presheaves
on C. For brevity, we write PpCq for PpC, Sq. If τ is a Grothendieck topology on C, we let
Shvτ pCq Ă PpCq denote the full subcategory of S-valued τ -sheaves.

‚ ∆‚
Z denotes the standard cosimplicial scheme over Spec Z, i.e., the functor ∆ Ñ Sch{Z given by

rns ÞÑ ∆n
Z :“ Spec

ˆ

Zrx0, ¨ ¨ ¨ , xns

p
řn

i“0 xi ´ 1q

˙

.

For any scheme S, we let ∆‚
S : ∆ Ñ Sch{S denote the base change of ∆‚

Z to S.

‚ SingA1
denotes the singular construction endofunctor on PpSmSq, see (5.1.2).

3Specifically, BG is the functor that sends an S-smooth scheme U to the nerve of GpUq, where GpUq is treated as a category
with a single object whose endomorphisms are given by GpUq.
4Equivalently, generically trivial by [GL23, Theorem 1.1].
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2. Purity for torsors under reductive groups

The primary aim of this section is to present the purity of reductive torsors on smooth relative curves over
Prüfer bases, as stated in Theorem 2.4. We then derive the main result, Theorem 2.7. Finally, we recall
the statement of Grothendieck–Serre conjecture for constant reductive group schemes in Theorem 2.6.

To help the reader get a feeling for working over Prüfer bases, we recall the following ring-theoretic result.

Lemma 2.1. Let X be a scheme that is flat and locally of finite type over an integral Prüfer scheme S.

(i) The scheme X is locally of finite presentation and locally coherent.

(ii) For every point x P X, the local ring OX,x is coherent.

(iii) If X is irreducible, then all nonempty S-fibres have the same dimension.

(iv) If OXs,ξ is reduced for a maximal point ξ P Xs, then the local ring OX,ξ is a valuation ring and
the extension OS,s ãÑ OX,ξ induces an isomorphism of value groups.

Proof. For (i)–(ii), see [GL24, Lemma 3.2.1]. For (iii), see [ÉGA IV3, lemme 14.3.10]. For (iv), see
[MB22, théorème A]. □

The following result, combined with limit arguments, often allows one to only consider Prüfer rings of
finite Krull dimension.

Lemma 2.2. Every semilocal Prüfer domain R is a filtered direct union of its subrings Ri such that:

(i) for every i, the ring Ri is a semilocal Prüfer domain of finite Krull dimension; and

(ii) for i large enough, Ri Ñ R induces a bijection on the sets of maximal ideals, hence is fpqc.

Proof. Write FracpRq “ YiKi as the filtered direct union of the subfields of FracpRq that are finitely
generated over its prime field K. For Ri :“ R X Ki, we have R “ YiRi. For (i), it suffices to see that
every Ri is a semilocal Prüfer domain whose local rings have finite ranks. Let tpju1ďjďn be the set of
maximal ideals of R. Then R “

Ş

1ďjďn Rpj
is the intersection of the valuation rings Rpj

. Thus we have

Ri “
Ş

1ďjďn

`

Ki X Rpj

˘

.

Since Ki{K has finite transcendence degree, by Abhyankar’s inequality [Abh56, Corollary 1], every Ki X

Rpj is a valuation ring of finite rank. By [BouAC, VI, § 7, proposition 1–2], Ri is a semilocal Prüfer
domain, and its local rings at maximal ideals are precisely the minimal elements of the set tKiXRpj

u1ďjďn

under inclusion. This implies (i). For (ii), the quasi-compact property follows from the affineness of
Spec R Ñ Spec Ri; each map Ri Ñ R is flat since R is torsion free. As flat morphism lifts generalizations,
it remains to show the bijection between maximal ideals of Ri and of R. Namely, we show that for i
large enough there is no strict inclusion relation between Ki X Rpj1

and Ki X Rpj2
for j1 ‰ j2. Indeed,

if πj P pjz
Ť

j1‰j pj1 for 1 ď j ď n, then (ii) holds for any i for which tπju1ďjďn Ă Ki. □

The following result will facilitate the passage to the case of closed point in the closed fibre.

Lemma 2.3. Let V be a valuation ring and let V Ñ A be an essentially finitely presented (resp., es-
sentially smooth) local homomorphism of local rings. There are an extension of valuation rings V Ă V 1

identifying their value groups and an essentially finitely presented (resp., essentially smooth) homomor-
phism V 1 Ñ A of V -algebras inducing a finite residue field extension.

Proof. Assume that A “ OX,x for an affine scheme X finitely presented over V and a point x P X lying
over the closed point s P SpecpV q. Let t “ tr.degpkx{ksq. After shrinking X around x if necessary, choose
sections b1, . . . , bt P ΓpX, OXq such that their images b1, ¨ ¨ ¨ , bt in kx form a transcendental basis of kx{ks.
Define p : X Ñ At

V by sending the standard coordinates T1, . . . , Tt of At
V to b1, . . . , bt, respectively. Since

the transcendental degree of kspb1, ¨ ¨ ¨ , btq{ks is t, the image η :“ ppxq is the generic point of At
ks

, so
5



V 1 :“ OAt
V ,η is a valuation ring whose value group is ΓV 1 » ΓV . Note that kx{kη is finite, the map

V 1 Ñ A induces a finite residue field extension.

Now assume that V Ñ A is essentially smooth. For a closed point z P X specializing x, after shrinking
X around z, there is a factorization X

π
Ñ AN

V Ñ Spec V for an étale morphism π. As the étale morphism
π induces finite separable extension of residue fields, we may assume that V “ ks and X “ AN

s . Since
txu is an irreducible closed subscheme of X “ AN

s , either we are done or it suffices to take the projection
AN

s Ñ AN´1
s given by a standard coordinate iterately until the image of x is the generic point of At

s. □

The following result provides an analog of the purity theorem of Colliot-Thélène and Sansuc for reductive
group torsors over two-dimensional regular Noetherian schemes ([CTS79, théorème 6.13]).

Theorem 2.4 ([GL24, Theorem 6.3]). Let X be a smooth relative curve over a semilocal affine Prüfer
scheme S. Let Z Ă X be a closed subscheme such that the inclusion j : XzZ ãÑ X is quasi-compact, and

Zη “ H for each generic point η P S and codimpZs, Xsq ě 1 for all s P S.

Let G be a reductive X-group scheme. Then, restriction induces the following equivalence

BétGpXq
„

ÝÑ BétGpXzZq.

In particular, we have a bijection of pointed sets

H1
étpX, Gq » H1

étpXzZ, Gq.

Remark 2.5. In higher relative dimensions, the purity Theorem 2.4 is inapplicable, even in the Noe-
therian setting and for G “ GLn. For instance, for any Noetherian regular local ring pR,mRq of Krull
dimension at least 3, there exists a vector bundle over SpecpRqztmRu that cannot be extended to Spec R.

The following resolution of the Grothendieck–Serre conjecture for constant reductive group schemes is a
key input for our Theorem 1.9. In particular, we first use it to deduce Theorem 2.7.

Theorem 2.6 ([GL23, Theorem 1.1]). For a Prüfer ring R, an irreducible, affine, smooth R-scheme X,
and a reductive R-group scheme G, every generically trivial G-torsor on X is Zariski-semilocally trivial:

the sequence 1 Ñ H1
ZarpX, Gq Ñ H1

étpX, Gq Ñ H1
étpKpXq, Gq is exact,

where KpXq is the function field of X. In other words, for every semilocal ring A of X, we have

ker pH1
étpA, Gq Ñ H1

étpFrac A, Gqq “ t˚u.

For any commutative unital ring A, we let Aptq denote the localization S´1Arts with respect to the
multiplicative system S of monic polynomials in Arts.

Theorem 2.7. Let R be a semilocal Prüfer domain and let G be a reductive R-group scheme. Then, a
G-torsor over Rptq is trivial if and only if it is generically trivial.

Proof. Let E be a generically trivial G-torsor over Rptq. Denote by r the Jacobson radical of R. We
observe that Rptq is the semilocalization of the projective t-line P1

R over R along the infinity section
8R{r P P1

R{r, with s :“ 1
t inverted:

Rptq “ OP1
R,8R{r

“ 1
s

‰

.

Note that 8R{r is precisely the set of closed points of ts “ 0u. Hence, E spreads out to a generically
trivial G-torsor rE on a punctured neighborhood of ts “ 0u in P1

R. By patching torsors, we may first
extend rE so that its definition locus contains the generic fibre P1

K , where K “ FracpRq. Similarly,
we may assume that rE is defined at the maximal point ξ of each R-fibre of P1

R; note that OP1
R,ξ is a

valuation ring. To see this, we may focus on the case where Spec R (and so P1
R) is topological Noetherian

(using Lemma 2.2); then we again patch torsors using Noetherian induction and the Grothendieck–Serre
conjecture for valuation rings ([Guo24, Theorem 1.3]): every generically trivial G-torsor defined on an
open subset of Spec OP1

R,ξ is trivial. Now, the definition locus of rE satisfies the conditions of XzZ in the
purity Theorem 2.4, so E extends to a G-torsor rE on P1

R. Hence, by Theorem 2.6, the pullback of rE to
the semilocal ring OP1

R,8R{r is trivial, so is the further pullback rE |Rptq “ E . □
6



3. Torsors over relative affine spaces

3.1. The Quillen patching and its inverse. A central technique for studying torsors over AN
R is a

local-to-global principle known as Quillen patching. A key insight of Gabber allows one to generalize it
to rather general classes of group-valued functors, see [Čes22c, Corollary 5.1.5]. We record it below only
for locally finitely presented group schemes, which is the main case of interest for us.

Theorem 3.2. Let R be a ring and let G be a locally finitely presented R-group scheme.

(a) For a G-torsor X over Rrt1, . . . , tds, the set S Ă R of those r P R such that X|pRrt1,...,tdsqr 1
r s

descends to a G-torsor over Rr 1
r s is an ideal.

(b) A G-torsor over Rrt1, . . . , tds descends to a G-torsor over R iff it does so Zariski-locally on R.

More generally, the analogues of (a) and (b) hold with Rrt1, . . . , tds replaced by any Z‘d
ě0-graded R-algebra

A –
À

i1,...,idě0 Ai1,...,id
such that R

„
ÝÑ A0,...,0.

Compared to Quillen patching Theorem 3.2, the following ‘inverse’ patching construction is more ele-
mentary, but still quite useful. The case where G “ GLn and A “ Rrt1, . . . , tN s is due to Roitman
[Roi79, Proposition 2].

Lemma 3.3. Let R be a ring, let G be a quasi-affine, flat, finitely presented R-group scheme, let A “
À

i1,...,iN ě0 Ai1,...,iN
be a Z‘N

ě0 -graded R-algebra (resp., a Z‘N
ě0 -graded domain over R) such that R

„
ÝÑ

A0,...,0, and suppose that every G-torsor on A (resp., every generically trivial G-torsor on A) descends
to a G-torsor on R. Then, for any multiplicative subset S Ă R, every G-torsor on AS (resp., every
generically trivial G-torsor on AS) whose restriction to each local ring of pA0,...,0qS » RS extends to a
G-torsor on R descends to a G-torsor on RS.

(The relevant case for us is when A “ Rrt1, . . . , tN s.)

Proof. We focus on the part on generically trivial torsors, since the other is [Čes22b, Proposition 5.1.10].

Let X be a generically trivial G-torsor on AS whose restriction to each local ring of pA0....,0qS » RS

extends to a G-torsor on R. Using Quillen patching Theorem 3.2, we can enlarge S to reduce to the
case when RS is local. Then, by our assumption, the restriction of X to pA0....,0qS » RS extends to a
G-torsor X0 on R. Applying a limit argument, we can reduce to the case when S “ r is a singleton, at
the cost of RS no longer being local. Notice that the projection onto the p0, . . . , 0q-th component

R ‘
`
À

pi1,...,iN q‰p0,...,0q Ai1,...,iN
r 1

r s
˘

» Ar 1
r s ˆRr 1

r s R ↠ R

induces an isomorphism both modulo rn and on rn-torsion for every n ą 0. So, by [Čes22b, Proposi-
tion 4.2.2], we can glue the G-torsor X on Ar 1

r s with the G-torsor X0 on R to obtain a generically trivial
G-torsor rX on Ar 1

r s ˆRr 1
r s R. Observe that

Ar 1
r s ˆRr 1

r s R » colim
iPN

A,

where the transition maps A Ñ A are maps of R-algebras that become isomorphisms over RS and are
given by multiplications by ri1`...`iN on the degree pi1, . . . , iN q-part Ai1,...,iN

. Hence, by a standard
limit argument, rX descends to a generically trivial G-torsor on some copy of A in the direct colimit.
Therefore, by assumption, it descends further to a G-torsor on R. The base change to RS of this final
descent gives a desired descent of X to a G-torsor on RS . □

3.4. Torsors on AN
R under reductive R-group schemes. The following result was conjectured in

[Čes22b, Conjecture 3.5.1] and settled later in [Čes22c, Theorem 2.1(a)].

Theorem 3.5. For a ring R and a totally isotropic reductive R-group scheme G, any G-torsor on AN
R

that is trivial away from some R-finite closed subscheme of AN
R is trivial.

Notice that the isotropicity assumption on G is essential, see, e.g., [Fed16] for counterexamples.

Sketch of proof. Let P be a G-torsor on AN
R that trivializes over AN

R zZ, where Z Ă AN
R is a R-finite

closed subscheme. As Z is also finite under the projection AN
R Ñ AN´1

R onto the first pN ´1q-coordinates,
replacing R with AN´1

R reduces us to the key case when N “ 1. In this case, one extends P to a G-torsor
7



rP over P1
R (by gluing P with the trivial torsor over P1

RzZ). Then rP|8R
is trivial, and, by base change

along A1
R Ñ Spec R (as observed by Gabber), one can reduce to showing that s˚p rPq is trivial for a

section s P A1
RpRq (in fact, even s “ 0R by shifting). This statement is insensitive to replacing rP by its

pullback along the map P1
R Ñ P1

R given by rx : ys ÞÑ rxd : yds for an integer d ą 0, which allows one to
assume that G is moreover semisimple simply connected. Granted these reductions, we revert to prove
the stronger statement that rP|A1

R
is trivial. For this, Quillen patching Theorem 3.2 reduces us to the

case of a local R. In this local case, one can try to modify rP along 8R so that it becomes trivial on the
closed fibre P1

R{mR
, and then argue using deformation rigidity of the trivial torsor on P1. □

For tori, the following result shows that Conjecture 1.5 holds more generally for fppf-torsors (not merely
Nisnevich-torsors) over any integral, normal base ring.

Lemma 3.6. For a normal domain A, an A-group M of multiplicative type, the pullback

H1
fppfpA, Mq

„
ÝÑ H1

fppfpAn
A, Mq is bijective.

Proof. When A is Noetherian, this is [CTS87, Lemma 2.4]. For a general normal domain A, we write it
as a filtered union of its finitely generated Z-subalgebras Ai, and, by replacing Ai with its normalization
(which is again of finite type over Z), we may assume that each Ai is normal. Then we can conclude
from the Noetherian case via a limit argument, since M is finitely presented over A. □

3.7. A Geometric presentation lemma. A useful lemma due to Lindel [Lin81, Proposition 1 and
Lemma] states that an étale extension of local rings A Ñ B with trivial extension of residue fields induces
isomorphisms along a well-chosen nonunit r P A:

A{rnA
„

ÝÑ B{rnB, where n ě 1.

In our context, where the prescribed B is essentially smooth over a valuation ring, we proved a variant
of loc. cit. that allows us to fix the r P B in advance, at the cost of the carefully choosing A to be a
local ring of an affine space over that valuation ring. This result is one of the crucial geometric tools
for attacking the Grothendieck–Serre conjecture for ‘constant’ reductive group schemes in [GL23]. Like
Lindel’s work on the Bass–Quillen conjecture for vector bundles, it also reduces the proof of Theorem 1.9
to the case where A is the coordinate ring of an affine open subset of some affine R-space.

For the sake of completeness, we present our Lindel-type result as follows. We will only use its aforemen-
tioned special case when Y “ tr “ 0u for a nonunit r P A and #x “ 1 such that A{rA

„
ÝÑ B{rB.

Proposition 3.8 ([GL23, Proposition 4.4]). Let R be a semilocal Prüfer domain. We fix

– an irreducible, affine R-smooth scheme X of pure relative dimension d ą 0,

– a finitely presented closed subscheme Y Ă X that is of R-fibrewise codimension ą 0, and

– a finite subset x Ă X.

If each fibre of x over a maximal ideal m Ă R has fewer than maxp# km, dq points, then there are

‚ an affine open W Ă X containing x and an affine open U Ă Ad
R;

‚ an étale R-morphism f : W Ñ U fitting into the following Cartesian square

W X Y W

W X Y U,

f where f |W XY : W X Y Ñ U is a closed immersion.

Remark 3.9. The assumption on #x holds, for instance, if either x is a singleton or d ą #x. Note that
a certain assumption on #x is necessary: when X is a smooth affine curve over a finite field Λ “ Fq

and x Ă XpFqq, the resulting map f from Proposition 3.8 should give an injection x ãÑ A1
Fq

, which is
impossible as soon as #x ą q.
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4. Proof of the Bass–Quillen conjecture for torsors over valuation rings

In this section, we prove the following result, the first main result of this paper.

Theorem 4.1. Let A be a ring that is ind-smooth over a Prüfer ring R, and let G be a totally isotropic
reductive R-group scheme. Then, via pullback, we have

H1
NispA, Gq

„
ÝÑ H1

NispAN
A , Gq or, equivalently, H1

ZarpA, Gq
„

ÝÑ H1
ZarpAN

A , Gq.

4.2. Sketch of proof of Conjecture 1.5 when A contains a field. Before proceeding further, we
briefly outline a proof of the equi-characteristic case of Conjecture 1.5, significantly simplifying Stavrova’s
argument in [Sta22] and also avoiding reliance on Nisnevich’s purity conjecture utilized in [Čes22c].

Specifically, by employing Quillen’s patching Theorem 3.2 and inducting on N , the problem reduces to
showing that, for a totally isotropic reductive group scheme G over a regular local ring A containing
a field, every generically trivial G-torsor over A1

A is trivial. In other words, we need to show that the
following composition map between pointed sets has a trivial kernel:

H1
étpA1

A, Gq
µ

ÝÑ H1
étpA1

K , Gq
ν

ÝÑ H1
étpKptq, Gq,

where K “ FracpAq and t is the standard coordinate on the affine line. But this follows from:

(a) µ has trivial kernel. This follows from the relative form of the Grothendieck–Serre conjecture
[Fed22, Theorem 1]: For a regular local ring R containing a field k, with fraction field K, a totally
isotropic reductive R-group scheme G, and an affine k-scheme W , no non-trivial G-torsor over
W ˆk R trivializes over W ˆk K. (It remains to take W “ A1

k.)

(b) ν has trivial kernel. By [Gil02, corollaire 3.10], a generically trivial G-torsor over A1
K is isomorphic

to λ˚pOp1qq for some cocharacter λ of GK , so it is itself trivial as Op1q is so. □

Remark 4.3. The above argument would generalize to the mixed characteristic case if one could prove
the relative form of the Grothendieck–Serre conjecture utilized in step (a) in this setting: For a DVR
D, an essentially smooth local D-algebra R with fraction field K, a totally isotropic reductive R-group
scheme G, and a flat affine D-scheme W , no non-trivial G-torsor over W ˆD R trivializes over W ˆD K.

4.4. Proof of Theorem 4.1. Since any section of AN
A Ñ Spec A induces sections to the pullbacks in

Theorem 4.1, these pullbacks are injective. Thus, it remains to show that they are surjective. By Quillen
patching Theorem 3.2, we may assume that R is a valuation ring by replacing R with its localizations. By
a limit argument [Gir71, VII, 2.1.6], it suffices to assume that A is R-smooth. A relative limit argument
involving Lemma 2.2 reduces us further to the case of a finite-rank R.

Step 1: A is a polynomial ring over R.

It suffices to show that every generically trivial G-torsor E over Rrt1, . . . , tN s is trivial; a fortiori, it
descends to a G-torsor over R. We will argue by double induction on the pair pN, rankpRqq. If N “ 0,
then, by convention Rrt1, . . . , tN s “ R, the assertion follows from [Guo24, Theorem 1.3] that a generically
trivial G-torsor over a valuation ring is trivial. Now assume N ě 1 and set A1 :“ RptN qrt1, . . . , tN´1s.

Claim 4.4.1. The GA1 -torsor EA1 descends to a GRptN q-torsor E0.

Proof of the claim. Consider the natural projection π : Spec RptN q Ñ Spec R. By definition, RptN q is
the localization of RrtN s with respect to the multiplicative system of monic polynomials. Thus, the
closed fibre of π is a singleton p0. Furthermore, the local ring RptN qp0 is a valuation ring of FracpRqptN q,
and its valuation restricts to the Gauss valuation on RrtN s associated to R given by

RrtN s Ñ ΓR,
ř

iě0 ait
i
N ÞÑ mini vpaiq,

where v : R Ñ ΓR is the (additive) valuation on R. In particular, we see that R and RptN qp0 have the
same value group. To apply the Quillen patching Theorem 3.2 and conclude, it suffices to show that the
base change of EA1 to RptN qprt1, . . . , tN´1s is trivial for every prime ideal p Ă RptN q. If p “ p0, then
the above discussion implies that rankpRπppqq “ rankpRq, so the desired triviality of the base change
follows from induction hypothesis. If p ‰ p0, then πppq P Spec R is not the closed point, and we then
have rankpRπppqq ă rankpRq. Therefore, by the induction hypothesis, ERπppqrt1,...,tN s is trivial, and hence
its further base change along Rπppqrt1, . . . , tN s Ñ RptN qprt1, . . . , tN´1s is also trivial. □
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Since E is generically trivial, so is EA1 . Recall that the local ring A1 at the generic point of the closed
fibre over R is a valuation ring, by the Grothendieck–Serre [Guo24, Theorem 1.3], the torsor EA1 is
generically trivial on that closed fibre. Hence, by considering the pullback of EA1 along a general section
s P AN´1

RptN q
pRptN qq, we see that E0 is also generically trivial because it is trivial at the unique point lying

over mR. By Lemma 2.7, the torsor E0, and hence also EA1 , is trivial. Consequently, E is trivial away from
the Rrt1, . . . , tN´1s-finite closed subset tf “ 0u Ă AN

R “ Spec Rrt1, . . . , tN s for some monic polynomial
f P RrtN s. By Theorem 3.5, the G-torsor E must be trivial, which completes the induction process.

Step 2: A is the localization rRS for a polynomial ring rR :“ Rru1, . . . , uds with respect to some multi-
plicative subset S Ă rR.

We wish to apply the ‘inverse’ to Quillen patching Lemma 3.3, with rR as the base ring and rRrt1, . . . , tN s

as the polynomial ring A. We still need to verify the assumptions there. First, by Step 1, any generically
trivial G-torsor over rRrt1, . . . , tN s descends to a G-torsor over rR. Second, for any generically trivial
G-torsor E over rRSrt1, . . . , tN s, the restriction of E to each local ring of the 0-section

Spec rRS » tt1 “ . . . “ tN “ 0u Ă AN
rRS

is trivial (so extends to the trivial G-torsor over rR). Indeed, by Bass–Quillen in the field case, the
restriction of E to Fracp rRSqrt1, . . . , tN s is trivial. Thus, the restriction E |

rRS
is generically trivial, and

hence is Zariski-locally trivial (Theorem 2.6). This verifies all the assumptions of Lemma 3.3.

Step 3: A is an arbitrary smooth R-algebra. Let E be a generically trivial G-torsor over AN
A . Our goal

is to show that E descends to a G-torsor over A. Using Quillen patching Theorem 3.2, we may assume
that A is an essentially smooth local algebra over a valuation ring R. By localizing R, we can further
assume that the ring map R Ñ A is local.

We will argue by double induction on the pair pdim R, dim A ´ dim Rq to show that E is even trivial. If
dim R “ 0, then R is a field, so we conclude from the classical field case settled in § 4.2. If dim A “ dim R,
then A is also a valuation ring (Lemma 2.1 (iv)), so we reduce to the case already settled in Step 1.
Assume now that dim R ą 0 and dim A ´ dim R ą 0.

By Lemma 2.3, we can enlarge R (without changing dim R) such that A becomes the local ring OX,x,
where X is an irreducible affine R-smooth scheme of pure relative dimension d ą 0, and x P X is a closed
point in the closed R-fibre of X. Note that d “ dim A´dim R. By our Lindel-type result § 3.7, shrinking
X if needed, there are an étale R-morphism f : X Ñ Ad

R and a nonunit r0 P A0 :“ OAd
R,fpxq such that

f induces a bijection A0{r0A0
„

ÝÑ A{r0A.

On the other hand, by induction hypothesis, EAN
Ap

is trivial for any p P Spec AztmAu (thus descends to
the trivial G-torsor over Ap):

‚ either p lies over a non-maximal ideal q Ă R, in which case Rq Ñ Ap is a local homomorphism,

dim Rq ă dim R, and dim Ap ´ dim Rq ď d “ dim A ´ dim R;

‚ or R Ñ Ap is a local homomorphism, in which case

dim Ap ´ dim R ă dim A ´ dim R.

Using Quillen patching Theorem 3.2, we conclude that EAN
Ar1{r0s

descends to a G-torsor F over Ar 1
r0

s.
Since F extends to a generically trivial G-torsor over A (for example the restriction of E along any section
s P AN

A pAq), it must be trivial by Theorem 2.6. Now, [Čes22a, Lemma 7.1] applies to the Cartesian square

AN
A{r0A AN

A

AN
A0{r0A0

AN
A0

,

„

we may glue E with the trivial G-torsor over AN
A0r1{r0s

to obtain a G-torsor E0 over AN
A0

that trivializes
over AN

A0r1{r0s
. By Step 2, the G-torsor E0 is trivial, so E is trivial as well. □
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Building on Theorem 4.1 and its equi-characteristic counterpart settled in § 4.2, we can now derive
Theorem 1.12, a generalization of Raghunathan’s result, [Rag89, Theorem A], to the relative context.

Proof of Theorem 1.12. In view of Theorem 4.1 and its equi-characteristic counterpart in full generality
sketched in § 4.2, it suffices to show the following.

Claim 4.4.2. If pG, Aq satisfies Conjecture 1.5, then a G-torsor over AN
A is trivial if and only if it is trivial

over AN
Ks and over 0A P AN

A pAq, where K “ Frac A and Ks is a separable closure of K.

Proof of the claim. Let E be a G-torsor over AN
A such that E |AN

Ks
and E |0A

are both trivial. First, note
that it suffices to argue that E is generically trivial so, in particular, we can assume that A is a field
(replacing A by its fraction field): indeed, if so, then E will descend to A by Conjecture 1.5, and will thus
be trivial by checking along the zero section. □

Assume now that A “ K is a field (Raghunathan’s situation in [Rag89, Theorem A]). We assume by
induction that E |AN´1

K
is already trivial, where AN´1

K is regarded as a closed subscheme of AN
K via

AN´1
K “ AN´1

K ˆK t0u ãÑ AN´1
K ˆK A1

K “ AN
K .

Let π : AN
K Ñ AN´1

K denote the projection onto the first pN ´ 1q-coordinates, and write Spec L for the
generic point of the target AN´1

K . Then, taking generic fibre of π we obtain a G-torsor E |A1
L

which is
trivial over A1

Ls and over 0 P A1
LpLq. By a result of Raghunathan and Ramanathan (cf., [RR84]), this

implies that E |A1
L

is trivial, so, in particular, E is generically trivial, as desired. □

5. A1-homotopy theoretic affine representability in mixed characteristics

5.1. The 8-category of motivic spaces. Let S be a quasi-compact quasi-separated scheme and let
SmS denote the category of quasi-compact quasi-separated (equivalently, finitely presented) S-smooth
schemes5. The presentable 8-category SpcpSq of motivic spaces over S is constructed from the ordinary
category SmS through the following steps:

a) Formally adjoin all small colimits in the 8-categorical sense to create PpSmSq :“ PpSmS , Sq, the
8-category of presheaves of spaces on SmS .

b) Formally invert the class of all Nisnevich covering sieves to create ShvNispSmSq, the 8-category
of Nisnevich sheaves of spaces on SmS .

c) Formally contract the affine line A1
S by inverting the maps pr: A1

U Ñ U for all quasi-compact
quasi-separated (equivalently, all affine) S-smooth schemes U , to create SpcpSq.

Concretely, ShvNispSmSq Ă PpSmSq is the full subcategory spanned by those presheaves of spaces sat-
isfying Nisnevich (Čech) descent. According to Morel–Voevodsky [MV99, Proposition 1.4], a presheaf
satisfies Nisnevich descent if and only if it satisfies Nisnevich excision, that is, it sends the empty scheme
H to the final object ˚ P S and sends Nisnevich squares to pullback squares in S (see also [SAG, Appen-
dix B.5.0.3]). As a result, the inclusion ShvNispSmSq Ă PpSmSq is stable under both limits and filtered
colimits (since filtered colimits commute with pullbacks in S). Furthermore, since the pullback squares
form a small set of conditions, this inclusion has a left exact (see [HTT, Lemma 6.2.2.9]), accessible left
adjoint (see [HTT, Proposition 5.5.4.15])

LNis : PpSmSq Ñ ShvNispSmSq,

called the Nisnevich sheafification functor. Similarly, by loc. cit., SpcpSq can be identified with the full
subcategory of ShvNispSmSq spanned by A1-local objects, i.e., those sheaves F such that pr˚ : F pUq

„
ÝÑ

F pA1
U q for all U P SmS ; moreover, the inclusion SpcpSq Ă ShvNispSmSq admits an accessible left adjoint

(which is in general not left exact). Overall, SpcpSq is a presentable 8-category, and the inclusion
SpcpSq Ă PpSmSq admits an accessible left adjoint

Lmot : PpSmSq Ñ SpcpSq,

5The quasi-compact quasi-separated assumption has two advantages: 1) the inclusion SmS Ă Sch{S is stable under taking
pullbacks along smooth morphisms; 2) SmS is a small category, which cleanly avoids set-theoretical issues, although
ultimately this is unnecessary (see Remark 5.2).
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called the motivic localization functor. Moreover, by construction, the composition

SmS Ñ PpSmSq
Lmot

ÝÝÝÑ SpcpSq

is a functor such that postcomposing with it induces an equivalence
FunL

pSpcpSq, Cq
„

ÝÑ FunNis,A1 pSmS , Cq

for any 8-category C with all small colimits, where p´qNis,A1 denotes the full subcategory of functors
satisfying Nisnevich codescent and A1-invariance, and p´qL denotes the full subcategory of colimit-
preserving functors. Finally, by [MV99, § 2, Lemma 3.20], Lmot can be described as

Lmot “

´

LNis ˝ SingA1
¯N

:“ colimnÑ8 LNis ˝ SingA1
˝ ¨ ¨ ¨ ˝ LNis ˝ SingA1

looooooooooooooooooooomooooooooooooooooooooon

n times

. (5.1.1)

Here, the singular construction endofunctor SingA1
: PpSmSq Ñ PpSmSq is described by the formula

SingA1
X :“ colim∆op X p∆‚

Z ˆZ ´q, (5.1.2)

where ∆‚
Z denotes the standard cosimplicial scheme over Spec Z. It is known that SingA1

takes values
in the full subcategory PA1 pSmSq Ă PpSmSq of A1-invariant presheaves and in fact it computes the left
adjoint to the inclusion PA1 pSmSq Ă PpSmSq. In particular, since the category ∆op is sifted [HTT,
Lemma 5.5.8.4], it follows that Lmot commutes with finite products.

Remark 5.2. In the construction of SpcpSq above, the category SmS can be replaced by either the
category of all smooth S-schemes or just the full subcategory Smaff

S of (absolutely) affine ones, without
altering the resulting 8-category ShvNispSmSq, and thus SpcpSq, up to equivalences. For instance, to
demonstrate that that the restriction functor

ShvNispSmSq Ñ ShvNispSmaff
S q (5.2.3)

is an equivalence, with its inverse given by the right Kan extension functor, we can apply [HTT,
Lemma 6.5.3.9]. This follows from the observation that every scheme admits a bounded6 Zariski-
hypercover where each term is affine: every scheme (resp., separated scheme) has an affine open cover
such that every finite intersection is a separated scheme (resp., an affine scheme).

5.3. Representability results. Let F P PpSmSq be a presheaf of spaces on SmS . From the construc-
tion of LmotpF q in (5.1.1), there is a canonical morphism

SingA1
pF q Ñ LmotpF q. (5.3.4)

Following [AHW18, Definition 2.1.1], we say that F is A1-naive if the restriction of (5.3.4) to PpSmaff
S q

is an isomorphism. Under the equivalence (5.2.3), F is A1-naive if and only if SingA1
F P SpcpSq. This

follows, for instance, from the explicit formula (5.1.1) for Lmot. In the A1-naive case, for every X P Smaff
S ,

the map π0

´

SingA1
F

¯

pXq Ñ π0 pLmotpF qpXqq » rX, F sA1 is bijective.

The following result is very useful for commuting geometric realizations and pullbacks.

Lemma 5.4. Let C be an 8-category. Consider the following Cartesian diagram in Funp∆op, PpCqq:

pX3q‚ pX2q‚

pX1q‚ pX0q‚.

If the simplicial object pπ0X0q‚ P Funp∆op, PpC, Setqq is constant in the simplicial direction, then the
following induced diagram of geometric realizations, valued in PpCq, is also Cartesian:

|pX3q‚| |pX2q‚|

|pX1q‚| |pX0q‚|.

6That is, if pXiq8
i“´1 denotes a hypercover, then there is an integer N such that if n ą N , then the canonical map

Xn Ñ kerp
ś

0ďiďn Xn´1 Ñ
ś

0ďiăjďn Xn´2q is an isomorphism.
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Proof. Since the problem is sectionwise, we can formally replace C with the category ˚, allowing us to work
with Pp˚q “ S. As argued in [AHW17, Proof of Lemma 4.2.1], the result then follows from the Bousfield–
Friedlander theorem. Alternatively, we could cite [Rez17, Proposition 5.4] or [HA, Lemma 5.5.6.17]. □

Lemma 5.5 (cf. [AHW17, Theorem 5.1.3]). Let

F P ShvNispSmSq
p5.2.3q

» ShvNispSmaff
S q

be a Nisnevich sheaf. If π0pF q is A1-invariant on smooth affine S-schemes, then F is A1-naive. In
particular, for every U P Smaff

S , the natural map

π0
`

SingA1
F

˘

pUq Ñ rU, F sA1 is bijective.

Proof. A key result proven in [AHW17, Proposition 2.3.2] (which refines [MV99, Proposition 1.4]) is
that a presheaf G on Smaff

S is a Nisnevich sheaf if and only if it satisfies affine Nisnevich excision, i.e.,
G pHq “ ˚ and G sends Nisnevich squares in Smaff

S to pullback squares in S. Given a Nisnevich square

V Y

U X

in Smaff
S . Then we have the following Cartesian square in Funp∆op, Sq:

F pX ˆS ∆‚
Sq F pU ˆS ∆‚

Sq

F pY ˆS ∆‚
Sq F pV ˆS ∆‚

Sq.

By assumption, the simplicial set π0F pV ˆS ∆‚
Sq is constant, we deduce from Lemma 5.4 (applied to

C “ ˚) that the induced diagram of geometric realizations is a Cartesian square in S. By the criterion
mentioned above, SingA1

F is a Nisnevich sheaf on Smaff
S . The result then follows. □

We can now finish the proof of Theorems 1.15 and 1.16.

Proof of Theorem 1.15. Let S be the spectrum of a Prüfer ring. Let BNisG denote LNispBGq, the
Nisnevich sheafification of BG. Then for every U P SmS , pBNisGqpUq is (the nerve of) the groupoid of
Nisnevich-locally trivial G-torsors over U , so that π0pBNisGqpUq “ H1

NispU, Gq. By the Bass–Quillen The-
orem 4.1, the presheaf H1

Nisp´, Gq on Smaff
S is A1-invariant, so Lemma 5.5 implies that SingA1

pBNisGq »

LmotpBNisGq. To conclude, note that since LmotpBGq » LmotpBNisGq, by Lemma 5.5 we have:

rU, BGsA1 “ π0 MapSpcpSqpLmotpUq, LmotpBGqq

» π0 MapSpcpSqpLmotpUq, LmotpBNisGqq

“ rU, BNisGsA1 . □

Proof of Theorem 1.16. Let ˚ “ S Ñ BNisG denote the base point classifying the trivial G-torsor over
S. We then have the following Cartesian diagram in ShvNispSmSq:

G{NisH BNisH

˚ BNisG,

(5.5.5)

where the right vertical arrow is induced by the inclusion H Ă G via functoriality, and G{NisH denotes
the Nisnevich sheafification of SmS Q U ÞÑ GpUq{HpUq. By assumption, we can identify G{NisH
with the usual fpqc quotient G{H restricted to SmS . Evaluating the diagram (5.5.6) at ∆‚

S ˆS ´, we
obtain a Cartesian diagram in Funp∆op, PpSmaff

S qq. Since the reductive S-group G is totally isotropic,
Theorem 4.1 implies that the simplicial object

π0pBNisGqp∆‚
S ˆS ´q “ H1

Nisp∆‚
S ˆS ´, Gq P Funp∆op, PpSmaff

S , Setqq
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is constant in the simplicial direction. By taking geometric realizations, Lemma 5.4 yields the following
Cartesian diagram in PpSmaff

S q:

SingA1
pG{Hq SingA1

pBNisHq

˚ SingA1
pBNisGq.

(5.5.6)

By the Bass–Quillen Theorem 4.1 and the A1-naive criterion Lemma 5.5, we have SingA1
pBNisHq,

SingA1
pBNisGq P SpcpSq. As the inclusion SpcpSq Ă PpSmaff

S q is stable under all limits, it follows
that SingA1

pG{Hq P SpcpSq, i.e., G{H is A1-naive. This completes the proof. □
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